
Catching them red-handed: Real-time Aggression
Detection on Social Media

Herodotos Herodotou
Cyprus University of Technology

Limassol, Cyprus
herodotos.herodotou@cut.ac.cy

Despoina Chatzakou
Centre for Research and Technology Hellas

Thessaloniki, Greece
dchatzakou@iti.gr

Nicolas Kourtellis
Telefonica Research
Barcelona, Spain

nicolas.kourtellis@telefonica.com

Abstract—Aggression on social media has evolved into a major
point of concern. However, recently proposed machine learning
(ML) approaches to detect various types of aggressive behavior
fall short, due to the fast and increasing pace of content gener-
ation as well as evolution of such behavior over time. This work
introduces the first, practical, real-time framework for detecting
aggression on Twitter via embracing the streaming ML paradigm.
This method adapts its ML binary classifiers in an incremental
fashion, while receiving new annotated examples, and achieves
similar performance as batch-based ML models, with 82–93%
accuracy, precision, and recall. Experimental analysis on real
Twitter data reveals how this framework, implemented in Spark
Streaming, easily scales to process millions of tweets in minutes.

Index Terms—online aggression detection, streaming machine
learning, social media

I. INTRODUCTION

In recent years, aggression has spiked across the Web,
with abusive behavior incidents being reported in different
contexts1. Such behavior can manifest in different platforms,
independently of each service’s utility and target audience. In
particular, aggressive, abusive, offensive, bullying, racist, or
sexist behavior has been studied in different media platforms
such as Twitter [1], [2], Instagram [3], YouTube [4], Yahoo
Finance [5], Yahoo Answers [6], 4chan [7] and across de-
mographics (gender and age) [8]. Due to the regular negative
publicity this problem receives in the news, popular platforms
have tried to curb it by deploying new methods and features.
For example, Twitter2 and Instagram3 have recently proposed
new features that aim to limit or block the ability of aggressors
to bully by posting messages on their victims’ pages, profiles,
or walls. However, even with such efforts in place, the problem
still persists due to its following aspects.

First, many of these platforms enable users to produce
and engage with a fast-paced generated content across dif-
ferent topics, thus, facilitating an exponential growth of user-
contributed posts: 2.5T Facebook posts to date and 4.2B Insta-
gram “likes” per day4, 778M tweets per day5, etc. Therefore,
platforms have a constantly increasing workload to process

1https://cyberbullying.org/facts and http://bit.ly/2QP1yi9
2https://www.bbc.com/news/business-51044086
3https://about.instagram.com/blog/announcements/

stand-up-against-bullying-with-restrict
4https://www.socialpilot.co/blog/social-media-statistics
5https://www.internetlivestats.com/one-second/

for detecting abusive behavior. Second, users (and especially
millennials, Generation Z, and Alpha) adapt quickly to new
platform community rules or algorithms rolled out to detect
such behavior. In fact, they typically find “innovative” ways
to circumvent rules to show aggression, using new words or
special characters to signify aggression but avoid detection [9].
Third, this complex behavior is difficult to model, as it highly
depends on context, cultural background, nature of interaction,
platform features, scope, etc. Finally, detecting this behavior
is a minority class problem, making it harder to address
effectively with automated systems: any given random data
set has few examples to train classifiers on.

Unfortunately, methods proposed by industry and academia
to detect such behavior have not adequately addressed these
issues. As most current ML approaches used are batch-based,
a trained model can become deprecated after some time [10].
Also, many approaches are computationally expensive for both
training and testing [11], [12]. Thus, there is urgent need for
new, real-time methods that: 1) adapt their ML modeling in
a similarly fast rate as content is generated, keeping models
up-to-date with users’ adaptability, and 2) scale to process the
increasing workload from generated content in real time.

We address this gap by making the following contributions:
• We propose the first, practical, and real-time framework

for aggression detection on Twitter. Departing from past
works, we embrace the streaming modeling paradigm,
and adapt our ML binary classifiers incrementally, as new
annotated examples are received through time.

• The framework is designed to be extensible and accurate
while providing online alerts to moderators, using state-
of-the-art streaming methods: Hoeffding Trees, Adaptive
Random Forests, and Streaming Logistic Regression.

• The framework is deployable on state-of-the-art stream-
ing engines such as Apache Spark (Section III).

• We demonstrate its effectiveness to detect aggressive
behavior at real time on a large set of 86k tweets,
annotated for this context (Section IV). Results from the
streaming methods are similar to typical batch-based ML
methods, with 82–93% performance in multiple metrics
(accuracy, precision, recall; Section V).

• This Spark-implemented framework easily scales out
to process millions of tweets in minutes, compared to
MOA, a popular centralized streaming ML engine.



II. RELATED WORK

Under the umbrella of “abuse”, various abnormal behaviors
may be involved, such as offensive language and hate speech,
bullying and aggression, and sexual exploitation. For an ef-
ficient detection of abusive behavior, ML-based approaches
are among the most commonly considered. Many earlier
works used traditional ML classifiers, such as logistic regres-
sion [11], [13], support vector machines [14], or ensemble
classifiers [15]. E.g., authors in [11] used a ML-based method
to perform hate speech detection on Yahoo Finance and News
data, while authors in [15] used a combination of probabilistic,
rule- and spatial-based classifiers with a vote ensemble meta-
classifier to study the spread of online hate speech on Twitter.

More recently, deep learning architectures have also been
used in an effort to improve the detection efficiency. For
instance, in [16] various deep learning architectures were
assessed, including Convolutional Neural Networks (CNNs),
Long Short-Term Memory Networks (LSTMs), and Fast-
Text [17]. In the same direction, in [12] a CNN with Gated
Recurrent Unit network was used, combined with word em-
beddings, to detect hate speech on Twitter. Finally, for the
detection of abusive and aggressive behaviors, authors in [2]
experimented with both traditional machine learning methods
(i.e., probabilistic, tree-based, and ensemble classifiers), as
well as deep neural networks (Recurrent Neural Networks).

Most of the previous work has focused on detecting abusive
behaviors on a “batch mode”. Namely, the goal was: given a
set of data, to train an ML classifier to identify as effectively
as possible different types of abusive behaviors. To increase
the accuracy of the detection process, some of the proposed
approaches are cost-ineffective in terms of the time needed
for both training and testing purposes. But as we live in an
ever-evolving world, it is of the utmost importance to develop
methods that can support the constant monitoring of content
produced in online sources, so that the detection of abusive
behaviors can be carried out in its infancy. To this end, authors
in [10] proposed a multi-stage cyberbullying detection solution
for Vine comments to reduce the classification time and the
time to raise alerts; an “incremental computation” approach
was followed at both the feature extraction and classification
stages to lower the computational complexity. Moreover, in [3]
a two-stage online framework is proposed for cyberbullying
detection on Instagram, where comments are examined as they
become available. To ensure the scalability of the detection
process, instead of constantly using the same set of features,
an online feature selection approach was followed.

Contributions. To our knowledge, this work is the first to
apply the streaming ML modeling paradigm for detecting
aggressive behavior on social media. Our framework is able
to adapt the ML models quickly and efficiently as content
becomes available, while also being able to scale and process
an increasing workload in real time. Finally, contrary to
existing methods, our framework is able to detect aggression
on individual tweets (and not at a session-level).

metrics

Feature Generation

Streaming 
Model

Prediction

Training

Tweet
Stream

AlertingSampling

unlabeled tweetslabeled tweets

all

instances

labeled instances

update

use

alerts

classified

instances

Evaluation

Labeling

Fig. 1: Processing pipeline for detecting aggression on Twitter.

III. SYSTEM OVERVIEW

The proposed framework for detecting aggression is charac-
terized by two key features: data streaming and parallelization.
The former enables the framework to dynamically update the
classification model as soon as a new labeled tweet arrives and
to detect aggressive tweets in real time. The latter is essential
for scaling the proposed approach in a distributed cluster in
order to handle the ever-increasing volume of tweets without
affecting the classification performance.

A. Processing Pipeline for Aggression Detection

The overall processing pipeline for detecting aggressive
behavior on Twitter is shown in Figure 1 and includes the
following steps: (1) feature generation, (2) training, (3) pre-
diction, (4) alerting, (5) evaluation, (6) sampling, and (7)
labeling. The data input comprises two streams with labeled
and unlabeled tweets, while the output consists of multiple
streams with alerts of aggressive tweets, evaluation metrics,
and sample tweets for labeling.
Input streams. The Twitter Streaming API gives access to a
stream of tweets in JSON format, each containing information
about the tweet (e.g., content, timestamp) and the user who
posted the tweet (e.g., name, number of followers). The stream
of labeled tweets originates from labeling (discussed below)
and uses the same JSON format plus an attribute with the class
label (normal or aggressive; see Section IV-A).
Feature generation. The first step begins with the typical
processing and cleaning, such as removing punctuation marks,
special symbols, numbers, URLs, hashtags, and user mentions.
Next, a set of user profile, text, and social network features
are extracted (described in Section IV-B) and normalized to
fall within a predefined range, such as between 0 and 1.
Training. This step consumes the stream of labeled feature
instances and incrementally updates the streaming classifica-
tion model. Each instance is processed only once and then it is
discarded. Hence, training in a streaming setting is much more
efficient than in batch processing, which requires collecting a
large training set first and then processes it multiple times in
an iterative fashion. Another benefit of stream-based learning



tweets

Tweet 
Streams

instances

classified
instances

labeled
instances

local 
statistics

local
models

global 
metrics

global
model

2. filter
(if label exists)

3. aggregate
(train: update and merge models)

4. map
(make prediction)

5. map
(compute statistics)

6. reduce
(compute metrics)

= data partition

= dataset

1. map
(generate features)

Fig. 2: Parallel data processing for feature generation, training,
prediction, and evaluation in Apache Spark Streaming.

is that in naturally adapts to data distribution changes (i.e.,
concept drift), keeping the streaming model always up-to-date.
Prediction. The streaming model is used in this step to predict
the class label of each tweet instance. Prediction is performed
on unlabeled instances in order to detect aggressive behavior
and raise appropriate alerts, while it is performed on labeled
instances for evaluating the classification performance of the
model by comparing the predicted labels with the true ones.
Alerting. This step raises an alert in real time whenever an
aggressive tweet is detected. Multiple options exist for how to
handle these alerts: (a) forward the tweet to a human moderator
for review, (b) post an automatic warning on the tweet, or (c)
remove the tweet automatically.
Evaluation. Classified labeled instances are used for com-
puting important metrics (e.g., confusion matrix, accuracy,
precision, F1-score) and evaluating the performance of the
streaming classification model. On the other hand, classified
unlabeled instances are used for computing various interesting
statistics such as the distribution of predicted class labels and
how they change over time.
Sampling. The primary goal of sampling is to select a small
subset of tweets for manual labeling. Given that aggressive
tweets are a minority, random sampling is not advisable as it
would result in an imbalanced dataset. A better alternative is
to implement a boosted random sampling technique that uses
the predicted label to boost a random sample with tweets that
are likely to be aggressive (without biasing the sample) [18].
Labeling. This step can generate new labeled tweets over time
for improving the performance of the streaming model. Label-
ing can be performed by expert moderators or via a crowd-
sourcing platform like CrowdFlower [18], and is beyond the
scope of this paper.

B. Parallel Data Processing for Streaming ML
For our framework to be practical, it must be able to scale

out to handle the massive volumes of tweets generated per day.
Hence, we have implemented our framework on top of Spark
Streaming6, a popular distributed stream processing engine. In

6https://spark.apache.org/streaming/

Spark Streaming, the input data streams are divided in micro-
batches and each micro-batch is processed through a directed
acyclic graph of operations. The vertices of the graph represent
the datasets at various phases of the processing and the edges
correspond to high-level transformations such as map, filter,
and aggregate. Datasets are partitioned and transformations
are executed in parallel across a cluster, leading to fast and
scalable stream data processing.

Figure 2 shows the key datasets and transformations for
performing feature generation, training, prediction, and eval-
uation in Spark Streaming. The input tweets for one micro-
batch are randomly divided into the data partitions that form
the “tweets” dataset. Next, each tweet is mapped (op #1) into
an instance using the feature generation step described above.
Instances with labels are then filtered (op #2), followed by
the training step using an aggregate transformation (op #3),
which is performed in two phases. In the first phase, the
local models are incrementally updated in parallel, while in
the second one, the local models are merged to update the
global model. The map, filter, and the first aggregate phase
are grouped together and executed as a set of parallel tasks.
The updated global model (with a size of less than 1MB) is
then distributed across the cluster and is available for use in
the next micro-batch. Moreover, another set of parallel tasks
perform the predictions (op #4) on all instances and compute
local statistics (op # 5), such as the confusion matrix. Finally,
the local statistics are reduced to compute (op # 6) global
evaluation metrics such as accuracy and F1-score. The alerting
and sampling steps consume the “classified instances” dataset
and are also performed in parallel (not shown in Figure 2).

We integrated our framework with streamDM7, a streaming
ML library for Spark Streaming, and utilized three classifi-
cation algorithms: (a) Hoeffding Tree (HT), an incremental
decision tree learner designed for large data streams [19];
(b) Adaptive Random Forest (ARF), an adaptation of the
classical Random Forest algorithm using HTs [20]; and (c)
Streaming Logistic Regression (SLR), an adaptation of the
long-established logistic regression in a streaming setting.

IV. DATASETS & FEATURE EXTRACTION

A. Twitter Data

For our study, an abusive dataset provided by [18] is used,
where tweets are characterized as abusive, hateful, spam, or
normal. Overall, the dataset consists of 100k tweets. As our
focus is on detecting aggressive behaviors in a streaming way,
we remove the 14k tweets labeled as spam, as they can be
dealt with more specialized techniques [21], while we consider
abusive and hateful tweets as one class (aggressive).

B. Feature Extraction

A wide range of features can be considered to represent
users’ online presence and thus to detect the existence of
abusive behavior. Such features can come from either the
users’ profile, posted content, or their social network. Authors

7http://huawei-noah.github.io/streamDM/



0 10 20 30 40
wordsPerSentence

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ilit

y 
De

ns
ity

aggressive
normal

(a) Mean words per sentence.

5 4 3 2 1
sentimentScoreNeg

0

1

2

3

4

5

6

7

8

Pr
ob

ab
ilit

y 
De

ns
ity

aggressive
normal

(b) Sentiment (negative).

0 2 4 6 8 10 12 14
cntSwearWords

0

2

4

6

8

10

Pr
ob

ab
ilit

y 
De

ns
ity

aggressive
normal

(c) Swear words.

Fig. 3: PDF (Probability Density Function) of (a) Mean words per sentence, (b) Sentiment (negative), and (c) Swear words.

in [2] studied a wide range of features falling in the afore-
mentioned categories. Inspired by their analysis and after our
own investigation, we selected the most contributing features,
with the aim of reducing execution time without sacrificing
performance. Indicatively, Figure 3 plots the PDF (Probability
Density Function) of some of the features presented next.

Profile Features. This feature category includes the account’s
age (number of days since its creation), number of a user’s
posts, number of lists subscribed to. Overall, we observed that,
on average (days), accounts that post normal content tend to
be older (≈1, 487) compared to the aggressive ones (≈1, 305).

Text Features. This feature category includes some basic text
features, syntactic and stylistic ones, the expressed sentiment,
as well as the existence of swear words within posts.

• Basic: Number of hashtags, uppercase words, and URLs
used in a post. We found that in the aggressive posts,
users tend to write with higher frequency in capital letters,
which is quite an expected result as uppercase text can
be indicative of intense emotional state or ‘shouting’.
Specifically, the average (STD) number of uppercase
words for the normal and aggressive posts are 0.96 (2.10)
and 1.80 (3.23), respectively.

• Syntactic: We analyze the writing style of the authors
of a text. Specifically, we focus on Part-of-Speech (POS)
features, which depict the relative frequency of adjectives,
adverbs, and verbs in a text. We found that aggressive
posts tend to contain fewer adjectives than normal. Adjec-
tives are generally used to describe nouns and pronouns,
and thus their lower usage in aggressive posts indicates
that users may prefer to carry out more direct attacks
without adding additional information.

• Stylistic: Mean number of words per sentence and mean
word length. Figure 3a depicts the PDF of the mean
number of words per sentence. Normal posts seem to
contain relatively more words compared to the aggressive
ones (16.66 and 13.16 words on average, respectively).
As for the mean word length, a similar pattern was
observed for the normal and aggressive posts.

• Sentiment: To assess how positive or negative is the
sentiment expressed in the posted content (on a [−5, 5]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

numHashtags
cntAdverbs

sentimentScorePos
cntAdjective

numUrls
cntFollowers

cntLists
cntVerbs

cntFriends
numUpperCases

cntPosts
meanWordLength

accountAge
wordsPerSentence
sentimentScoreNeg

cntSwearWords

Fig. 4: Evaluation of features based on Gini importance.

scale), we use the SentiStrength tool8. From Figure 3b,
we observe that normal posts include significantly less
negative sentiments compared to the aggressive ones.

• Swear Words: To estimate the number of existing curse
words within posts, we use a list of swear words obtained
from AllSlang9. Figure 3c indicates that aggressive posts
(avg., 1.03) contain a significantly higher number of
swear words compared to the normal posts (avg., 0.04).

Network Features. This feature category aims to measure a
user’s popularity based on two different criteria: the number of
followers (in-degree) and friends (out-degree). Overall, these
measures can quantify a user’s opportunity to have a positive
or negative impact in their ego-network in a direct way.
Features Evaluation. Figure 4 shows the feature relevance
based on Gini importance. We see that the most important
feature is the swear count, followed by negative sentiment,
number of words per sentence, account age, mean word length,
and count posts. Overall, we observe that the text based
features are among the most contributing ones.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness and efficiency
of our framework to correctly detect aggressive behavior in a
large set of tweets. Our evaluation methodology is as follows:
1) We study the performance of three streaming ML methods

(Section V-A).

8http://sentistrength.wlv.ac.uk/
9https://www.noswearing.com/dictionary



TABLE I: Hyperparameter tuning for streaming models

Model Parameter Range or Options Selected

HT Split Criterion Gini, InfoGain InfoGain
Split Confidence 0.001 - 0.5 0.01
Tie Threshold 0.01 - 0.1 0.05
Grace Period 200 - 500 200
Max Tree Depth 10 - 30 20

ARF All HT parameters above
Ensemble Size 10 - 20 10

SLR Lambda 0.01 - 0.1 0.1
Regularizer Zero, L1, L2 L2
Regularization 0.001 - 0.1 0.01

TABLE II: Key evaluation metrics for HT , ARF , SLR, DT

Metric Streaming Batch
HT ARF SLR DT

Accuracy 0.91 0.91 0.91 0.91
Precision 0.83 0.82 0.88 0.91
Recall 0.93 0.93 0.89 0.91
F1-score 0.88 0.87 0.88 0.91

2) We compare the performance of streaming and batch-based
ML algorithms (Section V-B).

3) We examine the scalability of our approach (Section V-C).

Experimental Setup. Our experiments were executed on a
server with a 64-bit, 8-core, 3.2GHz CPU, 64GB RAM, and
2.1TB storage, running CentOS Linux 7.2. We implemented
our approach over streamDM v0.2 and Spark Streaming
v2.3.2. The dataset used consists of 86k tweets, from which
53, 835 are labeled as normal and 32, 149 as aggressive.
Hyperparameter Tuning. For each ML model, we used grid
search to find optimal hyperparameter settings. Table I lists
the value ranges or options considered for each parameter
for the 3 streaming ML models used in our experimental
evaluation, namely Hoeffding Tree (HT ), Adaptive Random
Forest (ARF ), and Streaming Logistic Regression (SLR).
Performance Metrics. For all ML methods, we measure
typical ML metrics such as accuracy, precision, recall, and
F1-score. We focus on F1-score because it integrates precision
and recall into a unified measure. For streaming, we used the
popular prequential evaluation scheme, where instances are
first used to test, and then to train the streaming ML model.

A. Performance of Streaming ML Methods

For this experiment, we executed the three streaming binary
classifiers using prequential evaluation over the entire labeled
Twitter dataset and show the overall evaluation metrics in
Table II. In general, all three approaches achieve very similar
performance with 91% accuracy and ∼88% F1-score.

Figure 5 shows the F1-scores for the three methods every
one thousand tweets. We notice that all methods eventually
achieve an F1-score in the range of 83-92%. Through time,
all methods exhibit similar trends, i.e., their variability in
performance is similar. This means they are affected in a

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90

F1
-s

co
re

Tweets (thousands)

HT ARF SLR

Fig. 5: F1-score for HT , ARF , and SLR.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10

F1
-s
co
re

Day

HT ARF SLR DT

Fig. 6: F1-score for streaming vs. batch ML methods.

similar manner by transient changes in the distributions of the
available features. The only exception is for the HT , whose
performance dropped once at 66% due to a sudden decrease
in recall. Moreover, HT and SLR take ∼4k instances to
reach their full capacity with respect to detection performance,
while ARF takes longer (∼12k instances) to plateau its
performance.

B. Streaming vs. Batch ML Methods

Compared to streaming ML methods that process each
instance only once, batch methods typically observe each
instance multiple times. Thus, it is important to compare the
performance of streaming methods against similar batch meth-
ods. Specifically, we tested the Decision Tree J48, Random
Forest, and Logistic Regression using WEKA v3.710.

In order to offer a fine-grained comparison between stream-
ing and batch methods, we implemented a training scenario for
our batch methods that periodically updates the batch model
on newly acquired and labeled data. In particular, the batch
method is trained on data of one day and tested on the next
day. Then, it is trained on the data of the subsequent day and
tested on the day after, etc. Note that our Twitter dataset was
collected over a period of 10 consecutive days of ∼8-9k tweets
each day. As the batch methods performed very similarly, we
only show results for the decision tree (DT ).

Figure 6 shows the daily F1-scores for the three streaming
ML methods and the batch DT . There are two key observa-
tions arising from the results. First, the batch method (DT )
performs 1%–3% better compared to all streaming methods
for all days. Second, the performance of DT is fairly stable
through time since the model gets updated with new data every
day, and hence, it can keep up with transient changes in the

10https://www.cs.waikato.ac.nz/ml/weka/



0

300

600

900

1200

1500

1800

86 250 500 1000 1500 2000

Ex
ec

u
ti

o
n

 t
im

e 
(s

e
c)

Number of tweets (thousands)

MOA Spark

Fig. 7: Execution time of HT in MOA vs. Spark, given a
number of incoming tweets to be processed.

features’ distributions. The batch approach, however, is not
convenient in practice as it requires storing all the labeled
tweets of each day and performing a separate training process.
Overall, even though a streaming ML method processes each
instance only once, it is able to achieve similar performance
to batch-based ML methods.

C. Scalability for Real-time Detection on Twitter

In this section, we study the scalability of our frame-
work implemented over Spark and compare it against MOA
v19.05.011, a state-of-the-art framework for data stream min-
ing. MOA is a single-threaded ML engine, while Spark
processing is naturally parallelizable. In each case, we process
a fixed number of unlabeled tweets (ranged from 250k to 2m
tweets) intermixed with the 86k labeled tweets.

Figure 7 shows the total execution time for processing the
entire pipeline (recall Section III-A) with HT , while using
MOA or Spark. MOA exhibits a clear linear trend, where
doubling the number of tweets to be processed approximately
doubles the execution time taken to process them. This is to be
expected, since MOA processes tweets sequentially. Spark,
on the other hand, takes advantage of task parallelism and eight
available threads to process the same number of tweets much
faster than MOA. For example, to process 2 million tweets,
Spark needs 5.1× less time than MOA. These performance
results clearly demonstrate the scalability of our streaming
approach, in order to achieve real-time aggression detection.

VI. CONCLUSION AND FUTURE WORK

In this work, we have developed an aggression detection
framework for social media, where the entire pipeline – from
preprocessing and feature extraction to training and testing
– employs the data streaming paradigm. The streaming ML
models built are incrementally updated and remain always
up-to-date, despite any transient aggression behaviors. The
evaluation results show that such models can perform similar
to popular batch-based ML methods, achieving 82-93% accu-
racy, precision, and recall after processing just a few thousand
tweets. At the same time, the framework is remarkably scalable
and can process millions of tweets in minutes. In the future, we
plan to examine finer granularity classification tasks beyond
binary, as well as the ability of detecting a variety of behaviors

11https://moa.cms.waikato.ac.nz/

(e.g., bullying, aggressive, abusive, offensive, racist, sexist) for
diverse media platforms such as Twitter, Facebook, Instagram,
YouTube, etc.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the EU’s H2020 Programme, No 691025 (MSCA-RISE
project ENCASE) and No 830927 (project CONCORDIA).
The paper reflects only the authors’ views and the Commission
is not responsible for any use that may be made of the
information it contains.

REFERENCES

[1] D. Chatzakou, N. Kourtellis, J. Blackburn, E. De Cristofaro, G. Stringh-
ini, and A. Vakali, “Mean Birds: Detecting Aggression and Bullying on
Twitter,” in WebSci. ACM, 2017, pp. 13–22.

[2] D. Chatzakou, I. Leontiadis, J. Blackburn, E. D. Cristofaro, G. Stringh-
ini, A. Vakali, and N. Kourtellis, “Detecting Cyberbullying and Cyber-
aggression in Social Media,” ACM Transactions on the Web (TWEB),
vol. 13, no. 3, pp. 1–51, 2019.

[3] M. Yao, C. Chelmis, and D. S. Zois, “Cyberbullying Ends Here: Towards
Robust Detection of Cyberbullying in Social Media,” in WWW, 2019.

[4] Y. Chen, Y. Zhou, S. Zhu, and H. Xu, “Detecting Offensive Language
in Social Media to Protect Adolescent Online Safety,” in PASSAT and
SocialCom, 2012.

[5] N. Djuric, J. Zhou, R. Morris, M. Grbovic et al., “Hate Speech Detection
with Comment Embeddings,” in WWW. ACM, 2015.

[6] I. Kayes, N. Kourtellis, D. Quercia, and F. Iamnitchi, A. & Bonchi, “The
Social World of Content Abusers in Community Question Answering,”
in WWW. ACM, 2015.

[7] G. E. Hine, J. Onaolapo, E. De Cristofaro, N. Kourtellis, I. Leontiadis,
R. Samaras, G. Stringhini, and J. Blackburn, “Kek, Cucks, and God
Emperor Trump: A Measurement Study of 4chan’s Politically Incorrect
Forum and Its Effects on the Web,” in ICWSM. AAAI, 2017.

[8] P. Smith, J. Mahdavi, M. Carvalho, S. Fisher, S. Russell, and N. Tippett,
“Cyberbullying: Its Nature and Impact in Secondary School Pupils,”
Child Psychology and Psychiatry, vol. 49, no. 4, pp. 376–385, 2008.

[9] K. R. Allison, “Social Norms in Online Communities: Formation,
Evolution and Relation to Cyber-Aggression,” in Extended Abstracts of
CHI. ACM, 2018, p. 1–4.

[10] R. I. Rafiq, H. Hosseinmardi, R. Han, Q. Lv, and S. Mishra, “Scalable
and Timely Detection of Cyberbullying in Online Social Networks,” in
SCA. ACM, 2018, pp. 1738–1747.

[11] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang, “Abusive
Language Detection in Online User Content,” in WWW. ACM, 2016,
pp. 145–153.

[12] Z. Zhang, D. Robinson, and J. Tepper, “Detecting Hate Speech on
Twitter Using a Convolution-GRU Based Deep Neural Network,” in
European Semantic Web Conference. Springer, 2018, pp. 745–760.

[13] T. Davidson, D. Warmsley et al., “Automated Hate Speech Detection
and the Problem of Offensive Language,” in ICWSM. AAAI, 2017.

[14] W. Warner and J. Hirschberg, “Detecting Hate Speech on the World
Wide Web,” in 2nd Workshop on Language in Social Media, 2012.

[15] P. Burnap and M. L. Williams, “Cyber hate speech on Twitter: An
application of machine classification and statistical modeling for policy
and decision making,” Policy&Internet, vol. 7, no. 2, pp. 223–242, 2015.

[16] P. Badjatiya, S. Gupta, M. Gupta, and V. Varma, “Deep Learning for
Hate Speech Detection in Tweets,” in WWW. ACM, 2017, pp. 759–760.

[17] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for
Efficient Text Classification,” arXiv preprint arXiv:1607.01759, 2016.

[18] A. M. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn,
G. Stringhini, A. Vakali et al., “Large Scale Crowdsourcing and Char-
acterization of Twitter Abusive Behavior,” in ICWSM. AAAI, 2018.

[19] P. Domingos and G. Hulten, “Mining High-speed Data Streams,” in
SIGKDD. ACM, 2000, pp. 71–80.

[20] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck et al.,
“Adaptive Random Forests for Evolving Data Stream Classification,”
Machine Learning, vol. 106, no. 9-10, pp. 1469–1495, 2017.

[21] M. Giatsoglou, D. Chatzakou, N. Shah, C. Faloutsos, and A. Vakali,
“Retweeting Activity on Twitter: Signs of Deception,” in PAKDD.
Springer, 2015, pp. 122–134.


