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ABSTRACT

Tax authorities need to maximize the yield of the limited tax audits
they afford to perform each year. Thus, they need to predict the
likelihood of a candidate audit resulting in a satisfactory yield; this
predictive process is usually referred to as audit case selection. Ran-
dom Forests (RFs) constitute a standard method for Value Added
Tax (VAT) audit case selection. Despite, though, their success, their
predictive performance is still below the expectations of tax au-
thorities, that need to timely detect cases of significant audit yield
potential. This lackluster performance is mainly attributed to the
fact that RFs cannot deal with data that entail non-stationary nature,
multiple modalities, or discontinuities. These are common char-
acteristics of real-world datasets; thus, the incapacity to properly
address them is a major suspect for undermining their performance.
This work addresses these issues by considering a generative non-
parametric Bayesian model with power-law behavior, capable of
generating distinct (Bayesian) RFs over the observations space of
the modeled data. This way, our approach enables capturing an in-
definite number of distinct classification patterns, while being able
to effectively handle outliers. The latter advantage is of paramount
importance for the effectiveness of the modeling procedure in cases
where few large parts of the observations space can be modeled by
few RF classifiers, yet there is a large number of small parts of the
observations space that require distinct RFs to be properly modeled
(power-law nature). We provide an efficient algorithm for model
inference, based on the variational Bayesian framework, and prove
its efficacy using real-world datasets.
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1 INTRODUCTION

The Value Added Tax (VAT) represents an excess of 30% of EU
tax revenue [13]. VAT is a consumption tax collected on behalf of
the state by the businesses, for almost all the services and goods
consumed in the EU. According to the latest annual published Euro-
pean Commission report [12], the difference between the estimated
and actual VAT collected, typically referred to as the VAT-gap, is
estimated for all EU Member States at 12.3% (147 billions of Euros).

The Tax Authorities have the responsibility to the state for
achieving the maximum taxpayer compliance with the tax leg-
islation so as to maximize tax revenue. To achieve this goal the
limited resources available need to be allocated carefully in order to
achieve the highest possible taxpayer compliance with the tax laws
and the best tax collections. One critical aspect of this issue is the
prioritisation of the compliance action to be taken against different
taxpayers. The taxpayer behaviour is very difficult to analyze due
to diversity of compliance behaviour, absence of taxpayer motives
for tax legislation compliance and the tax legislation complexity.

In general taxpayer compliance can be classified in four cate-
gories: i) Decided not to comply ii) Do not want to comply iii) Try to
comply and iv) willing to comply. Therefore a systematic approach
is usually adopted to identify the major risks in respect not only
to the number of taxpayers not being tax compliant but also to the
amount of tax and how it will be addressed.

The Legislation provides the tax departments with a plethora of
different measures that can be employed to minimize non compli-
ance from the taxpayers with different consumption of resources.
Easy to navigate web pages, taxpayer education, publications, writ-
ten communication require negligible resources from the tax au-
thorities and can address thousands of taxpayers at the same time.
The result is maximum voluntary compliance from taxpayers who
are willing to comply or try to comply with the tax legislation with
minimum effort. For example taxpayers who have not filed the lat-
est tax return one week before the deadline can be send a reminder
letter.

On the other hand in the case of taxpayers who decided not
to comply or do not want to comply the opposite is true. Control
audit visits are labor intensive and require limited and expensive
resources. For an audit of a single taxpayer with a non compliant
past a team of expert tax auditors is required Fig.1.

Therefore, it is key that we come up with effective audit case
selection processes, with the aim of selecting the audit cases that are
expected to yield significant tax. This procedure has to be performed
by leveraging some sort of automation. To this end, a variety of


https://doi.org/10.1145/3383455.3422515
https://doi.org/10.1145/3383455.3422515

ICAIF 20, October 15-16, 2020, New York, NY, USA

Attitude to tax

C i strategy

Have decided not to
comply

Use full force of the
law

Make it
Easy

Figure 1: Attitude to tax compliance and compliance action

automation methods are currently employed. Traditionally, expert
auditors resort to rules-based risk modelling systems for selecting
audit cases [29]. However, this method of risk modelling is highly
biased as it reflects the experts’ understanding of taxpayer behavior,
which may be partial and incomplete. In addition, as it is needed to
write hundreds of rules, this is an expensive and time consuming
procedure. Finally, it suffers from the limited capability of human
experts to express their acquired experience in the form of rules.
Besides, under this paradigm, selection is performed on the basis
of the number of satisfied rules exceeding some heuristically-set
benchmark. Apparently, this threshold value has to change each
time we need to accommodate more or updated rules; this renders
system maintenance almost prohibitive.

Due to these disadvantages, many EU tax authorities are cur-
rently considering advanced data analytics and machine learning as
a promising alternative towards automated audit case selection [11].
Indeed, tax authorities collect and process millions of tax returns
that contain a plethora of diverse information. Thus, it is reason-
able to assume that tax return corpora naturally lend themselves
to the formation of appropriate training datasets for successful
machine learning-based audit case selection systems. A prevalent
characteristic of the existing developments in the field is the lack of
tailor-made machine learning models that can make the most out
of the vastly available tax return data. For instance, Random Forests
(RFs) constitute one of the most commonly used machine learning
approaches in the context of tax audit case selection [16]. The main
reasons behind their prominence can be traced to: (i) their capacity
to effectively deal with high-dimensional data; (ii) their computa-
tional efficiency, both when it comes to training and when it comes
to prediction generation; (iii) their notable robustness to outliers
and non-linear features in the training data; (iv) their capability
to effectively learn from unbalanced classification data, which are
typical in real-world datasets stemming from tax audits.

Motivated from the importance of addressing the VAT-gap prob-
lem, this paper offers a state-of-the-art solution to VAT audit case
selection. We posit that the development of tailor-made machine
learning models that take into account the special characteristics of
the VAT return data will allow for unleashing the untapped potential
in the field. To this end, we build upon the existing state-of-the-art
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in the field, which is based on RFs. Our approach is inspired from
the fact that a single RF model cannot sufficiently model data that
entail non-stationary covariance functions, multi-modal output, or
discontinuities. On the contrary, to model data with such properties
via RFs, we need to fit different RFs, each on only a part of the data
with coherent statistical behavior.

Our approach attacks these issues by considering a generative
nonparametric Bayesian model with power-law properties, capable
of generating distinct (Bayesian) RFs over the observations space
of the modeled data. Our method comprises the postulation of
a nonparametric Bayesian model based on the introduction of a
Pitman-Yor [21] process prior over the space of possible RFs, defined
in the whole space of input variables. Our approach is designed
for better dealing with tasks entailing non-stationary covariance
functions, multi-modal output, or discontinuities, which simple RF
models may fail to successfully handle. Thus, it enables effectively
capturing an indefinite number of distinct classification patterns,
while being able to effectively handle outliers. The latter advantage
is of paramount importance for the effectiveness of the modeling
procedure in cases where few large parts of the observations space
can be modeled by few RF classifiers, yet there is a large number of
small parts of the observations space that require distinct RFs to be
properly modeled (power-law nature). We dub our approach the
Pitman-Yor process mixture of Bayesian forests (PYP-RF) for VAT
audit case selection.

The remainder of this paper is organized as follows: In the follow-
ing Section, we provide a brief overview of the related work. Then,
we introduce our approach, elaborate on its rationale, and devise its
training and inference algorithms, based on a truncated variational
inference paradigm. Further, we perform an extensive experimental
evaluation of our approach using real-world data from Cyprus tax
authority. Finally, in the concluding Section, we summarize our
contribution and outline open issues for further research.

2 METHODOLOGICAL BACKGROUND

2.1 Rules-based and data mining systems

The software SAS Enterprise Miner! has been used in the past to
select audit cases for VAT purposes. Before use, an extensive feature
engineering is a must to cater for missing data and categorize data
in different groups.

The Irish Revenue Office has addressed the issue of selecting
high tax yield non compliant taxpayers with the employment of
data mining [10] using the SAS software (SAS Enterprise Miner
and SAS Enterprise Guide). The experience gained from the banks
and insurance companies is utilized against the non compliant
taxpayers. According to the IDC [27] SAS and IBM have a 43%
(revenue volume) combined market share of tools for predictive
analytics.

The task of selecting few taxpayers with the highest expected
audit yield accurately is almost impossible to be performed man-
ually. The allocation of the experienced tax auditors needs high
degree of accuracy to be translated in to maximum revenue as the
number of audits that can be performed is limited. This cannot be
achieved manually consistently.

Uhttps://www.sas.com/en_us/software/enterprise-miner.html
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Since the process of audit case selection cannot be facilitated
manually the automation process of identifying high risk taxpayers
and audit case selection was spearheaded by heuristic rules set
by expert auditors [29]. A decision to audit a taxpayer depends
if the number of rules that apply exceed a threshold, for example
if fifty rules "fire" an audit is performed. This process is highly
subjective since is based on the opinion of the experts and requires
time and effort from a team of experts who create hundreds of rules
for different areas like number of late returns, sales fluctuations,
inconsistencies in the amounts declared etc.

After relying to the rules-based systems for many years the tax
departments moved away from these complicated, subjective rules
and thresholds and considered more reliable automated alternatives
like advanced analytics and machine learning models [11]. Tax de-
partments collect vast amounts of data for each and every taxpayer
like filed returns which are not utilized. If exploited successfully
this data can open the road for an automated process for selecting
accurately taxpayers with high audit yields.

2.2 Bayesian Forests

RF models constitute one of the most popular methods for both re-
gression and classification. Their functionality revolves around the
concept of decision trees (DTs) [7]. As DTs are formulated by means
of a random partition procedure, they constitute weak learners the
performance of which may become underwhelming when dealing
with difficult classification or regression tasks. To compensate for
this weakness, RFs resort to the ensemble learning rationale: They
fit multiple DTs on the same dataset, each performing different
hierarchical random splits, 6, of the input space. Then, prediction
is performed on the basis of an appropriate voting mechanism.
Recently, [25] introduced an alternative view towards RFs: Their
empirical Bayesian forest (EBF) algorithm replaces the Poisson
distribution, from which the tree parameters 6 are drawn, with an
Exponential (or Dirichlet, when normalized) posterior, 7 (6). In
this context, a suggested sample (random partition), 0, is retained
if it facilitates the minimization of the Gini impurity index on
the training dataset. This inferential treatment has been shown to
induce a reliable performance gain across diverse application areas.

2.3 Bayesian Nonparametrics

Nonparametric Bayesian modeling techniques, especially Dirich-
let process mixture (DPM) models, have become very popular for
performing nonparametric density estimation [18, 19, 28]. Briefly,
a realization of a DPM can be seen as an infinite mixture of distri-
butions with given parametric shape (e.g., Gaussian). This theory
is based on the observation that an infinite number of component
distributions in an ordinary finite mixture model tends on the limit
to a Dirichlet process (DP) prior [1, 19]. Eventually, as a part of
the model fitting procedure, the nonparametric Bayesian inference
scheme induced by a DPM model yields a posterior distribution on
the proper number of model component densities (inferred clusters)
[5], rather than selecting a fixed number of mixture components.
Hence, the obtained nonparametric Bayesian formulation elimi-
nates the need of doing inference (or making arbitrary choices) on
the number of mixture components (clusters) necessary to represent
the modeled data.
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2.4 The Pitman-Yor (PY) process

DP models were first introduced by Ferguson [14]. A DP is char-
acterized by a base distribution Gy and a positive scalar «, usually
referred to as the innovation parameter, and is denoted as DP(«, Gy).
Essentially, a DP is a distribution placed over a distribution. Let
us suppose we randomly draw a sample distribution G from a DP,
and, subsequently, we independently draw M random variables
{©}, }M from G:

Gla, Gy ~ DP(a, Go) (1)

0,IG~G, m=1,...M )

Integrating out G, the joint distribution of the variables {©}, }
can be shown to exhibit a clustermg effect. Specifically, given the
first M — 1 samples of G, {©;, }m 1» it can be shown that a new
sample @;I is either (a) drawn from the base distribution Gy with
probability —&—, or (b) is selected from the existing draws, ac-
cording to a multinomial allocation, with probabilities proportional
to the number of the previous draws with the same allocation [4].
Let {615,
{6* mil
The PY process functions similar to the DP. Let us suppose we
randomly draw a sample distribution G from a PY process, and, sub-
sequently, we independently draw M random variables {©;}, }
from G:

be the set of distinct values taken by the variables

Gl8, e, Go ~ PY(6, a, Go) (3)
with
C  M-1
“ _a+t 5C Ve
PO} O )izt 8.2.Go) = +;a+M o,
4)
where vM~1 is the number of values in {@* that equal to

O, § € [0,1) is the discount parameter, & > 5 is 1ts innovation
parameter, and Gy the base distribution.

This way, the PY process gives rise to a rich-gets-richer clus-
tering property, i.e., the more samples have been assigned to a
draw from Gy, the more likely subsequent samples will be assigned
to the same draw. Further, the more we draw from Gy, the more
likely a new sample will again be assigned to a new draw from Gy.
These two effects together produce a power-law distribution where
many unique 0}, values are observed, most of them rarely [21],
thus allowing for better modeling observations with heavy-tailed
distributions. In particular, for § > 0, the number of unique values
scales as O (aM‘S), where M is the total number of draws. Note also
that, for § = 0, the PY process reduces to the DP.

A characterization of the (unconditional) distribution of the
random variable G drawn from a PY process, PY(4, a, Go), is pro-
vided by the stick-breaking construction of Sethuraman [23]. Con-
sider two infinite collections of independent random variables
v = (vc)onys {Octit w1 Where the v; are drawn from a Beta distribu-
tion, and the ©, are independently drawn from the base distribution
Go. The stick-breaking representation of G is then given by [26]

G =) ac(v)de, ()
c=1
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where
p(vc) = Beta(l — 6, a + dc) 6)
c—1
oc@) =oc[ [1-0p) ef0.1] ()
j=1
and
D oc(e) =1 ®
c=1

The stick-breaking representation of the PY process makes clear
that the random variable G is discrete. It shows explicitly that the
support of G consists of a countably infinite sum of atoms located at
O¢, drawn independently from Gy. Indeed, under the stick-breaking
representation of the PY process, the atoms ., drawn indepen-
dently from the base distribution Gy, can be seen as the parameters
of the component distributions of a mixture model comprising an
unbounded number of component densities, with mixing propor-
tions @ (v).

3 PROPOSED APPROACH
N

Let us consider a dataset D = {xp, yn},_;, Where y, € {0, 1} is the
result of the nth audit, with the value of 1 corresponding to an audit
yield deemed satisfactory by the tax authority (i.e., exceeding some
threshold). The specific selection of this threshold value used in the
development of our model will be discussed in the experimental
section. In our work, the observed data points x, are obtained
from the VAT records of the taxpayers selected for audit. These are
47-dimensional vectors that comprise the following attributes: (i)
economic activity type, classified according to the Eurostat NACE
classification?; (ii) district codes; (iii) type of person (physical, legal);
(iv) declared amounts, including VAT due/local sales, VAT due/EU
purchases, VAT refundable (purchases), VAT payable, net value of
sales, net value of purchases, value of zero-rated sales, value of
purchases from EU (goods and services), and value of sales to EU
(goods and services).

On this basis, the audit case selection task can be framed as a
binary classification task. Since RFs currently constitute the most
popular machine learning approach used for audit case selection,
we initiate the formulation of our model considering that the ran-
dom decision variables y, can be expressed via a function fy(x5),
where the latent variables 0 are drawn from an EBF, 7 (0). Fur-
ther, we postulate that the classification mechanism encoded into
the distribution of the random variables y; cannot be uniquely
described by a single latent function fg(x,), but fy(x,) is only
an instance of the (possibly infinite) set of possible latent func-
tions fg_(xn), ¢ = 1,...,00, parameterized from different EBFs,
6. ~ 7:(0). Then, to determine the association between obser-
vations, x5, and latent functions, fy(-), we impose a PY process
prior over this set of functions. The power-law nature of the PY
process prior distribution allows for effectively handling cases of
heavy-tailed observable data, which are prevalent in VAT audit case
selection processes, as discussed previously.

Let us introduce the set of variables {znc}nN’éfl, with z,,c = 1ifthe
function modeling the correlation pattern between the observation
xp, and the corresponding classification decision yy, is captured by

Zhttps://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
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the cth inferred (component) EBF, otherwise z,. = 0. Based on this
assumption, and the descriptions of the EBF model as well as the
PY process prior, the prior configuration of the proposed PYP-EBF
model is defined as follows:

P(Ynlxn, zZne = 1) = Bernoulli(yx|fy, (xn)) 9)
P(zne = 1v) = @c(v) (10)
c—1
0¢() = v¢ ]_[(1 ~0;) € [0,1] (11)
j=1
with
Z oc(v) =1 (12)
c=1
p(vc) =Beta(l -6, a + dc) (13)
and the cth inferred EBF is:
p(0c) =7:(0) (14)

while the functional form of the decision probability fp_(xn) is the
mean of the probabilities pertaining to the y = 1 class over the trees
consisting the cth EBF (as encoded into the inferred vector 6.).

3.1 Inference algorithm

Inference for nonparametric models can be conducted under a
Bayesian setting, typically by means of variational Bayes (e.g., [6]),
or Monte Carlo techniques (e.g., [22]). Here, we prefer a variational
Bayesian approach, due to its considerably better scalability in
terms of computational costs. Our variational Bayesian inference
algorithm for the PYP-EBF model comprises derivation of a family
of variational posterior distributions g(.) which approximate the
true posterior distribution over the infinite sets Z, v = (v¢) e, and
{0c}o2,, and the innovation parameter a. Apparently, Bayesian
inference is not tractable under this setting, since we are dealing
with an infinite number of parameters.

For this reason, we employ a common strategy in the literature
of Bayesian nonparametrics, formulated on the basis of a truncated
stick-breaking representation of the PY process [6]. That is, we fix
a value C and we let the variational posterior over the v; have the
property g(vc = 1) = 1. In other words, we set @.(v) equal to zero
for ¢ > C. Note that, under this setting, the treated PYP-EBF model
involves a full PY process prior; truncation is not imposed on the
model itself, but only on the variational distribution to allow for
tractable inference procedure. Hence, the truncation level C is a
variational parameter which can be freely set, and not part of the
prior model specification.

Let W = {v,a,Z,{0, }cczl} be the set of all the parameters of the
PYP-EBF model the (posterior) distributions of which we need to
train w.r.t. the available dataset . Variational Bayesian inference
introduces an arbitrary distribution g(W) to approximate the ac-
tual posterior p(W|X, Y) which is computationally intractable [3].
Under this assumption, the log marginal likelihood (log evidence),
logp(X,Y) becomes [15]

logp(X,Y) = L(q) +KL(qllp) (15)

where
P(X, Y, W)

q(W) (16)

£(g) = / AW q(W)log
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and KL(g||p) stands for the Kullback-Leibler (KL) divergence be-
tween the (approximate) variational posterior, g(W), and the actual
posterior, p(W|X,Y). Since KL divergence is nonnegative, £(q)
forms a strict lower bound of the log evidence, and would become
exactif (W) = p(W|X, Y). Hence, by maximizing this lower bound
L(q) (evidence lower bound, ELBO) so that it becomes as tight as
possible, not only do we minimize the KL-divergence between the
true and the variational posterior, but we also implicitly integrate
out the unknowns W. For simplicity, we consider that the posterior
q(W) factorizes over each one of the parameters, similar to the
imposed prior (mean-field assumption [8]). By construction, this
iterative, consecutive updating of the variational posterior distri-
bution is guaranteed to monotonically and maximally increase the
ELBO £(g) [9].

Let us denote as (.) the posterior expectation of a quantity. Based
on the previous discussion, ELBO maximization yields

q(vc) = Beta(vclﬁc,1, ﬁc,z) 17)
where
N
fe1=1-6+ Z‘Z(ch =1) (18)
n=1
C N
ep=a+cd+ > > qlzne =1) (19)
c¢’=c+1 n=1

Similarly, regarding the posteriors over the latent variables Z
that assign each data point to the inferred EBFs, we have

q(znc = 1|xn) o exp ({logac(v))) fo,. (xn) (20)
where
c—1
(logac(v)) = Z (log(1 — o)) + (logue) (21)
c’=1
with
(logoc) = ¢(Be1) — ¥(Bea + Be2) (22)
(log(1—0c)) = ¥(Be2) — ¥(Be1 + Pe2) (23)

At this point, we emphasize that the mixture model is driven by
the observations space, X, as it also becomes apparent from the
resulting posterior (20).

On the other hand, the sampled EBFs, . are inferred by resorting
to the standard CART algorithm, as employed in the case of a
single trained EBF [25], but presented with a subset of the available
training dataset, . This subset is obtained by sampling from the
posterior q(z,) of each training example, and collecting the set of
the data points, x5, with z,c = 1.

The estimates of the posteriors prescribed above are updated con-
secutively and in an iterative fashion until convergence of the model
ELBO. That is, on each training algorithm iteration, we update the
expressions of the variational posteriors, resample assignments
from the posteriors q(z,c = 1), and rerun the CART algorithm to
obtain samples 6. from their corresponding posteriors. This con-
cludes the derivation of the inference algorithm of our PYP-EBF
model.
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3.2 Prediction Generation

After training the proposed PYP-EBF model on a dataset pertaining
to tax audits and their outcomes, D = {x,, yn}ﬁil, we end up
with a set of inferred EBF’s with trees encoded into the vectors
{Hc}cczl. These can be used to generate predictions for unseen
data x.. In the context of our addressed problem of tax audit case
selection, this corresponds to deciding whether a tax payer with
VAT records summarized into the vector x, may result in an audit
yield exceeding the set threshold.

To this end, we employ a maximum a posteriori (MAP) rationale.
Specifically, we first compute the posterior probability of the test
data point , x., being assigned to the trained component EBF’s.
On this basis, we determine the winner component that maximizes
q(z«c). Then, we perform the classification task using the output
probabilities of the winner EBF. We emphasize that this is in contrast
to the more typically used mean-field approach, under which one
would compute the average of the probabilities obtained from the
inferred EBF’s, weighted by the corresponding posteriors q(z«c).
However, we adopt this MAP approach as we have found it to
perform consistently better.

4 EXPERIMENTAL EVALUATION
4.1 Dataset Collection

To evaluate our approach, we have managed to get access to an
extensive real-world dataset of Cyprus tax authority. Specifically,
we use a dataset comprising over 10,000 VAT returns audited in
the last six years. The generated label information is set to 1 if
the tax audit generated a yield which exceeded a set threshold.
Following the instructions of the collaborating tax authority, we
consider four alternative thresholds: (i) The yield value that the tax
authority currently considers barely worth the required resources
for audit (Base scenario); (ii) this amount increased by 16%; (iii) the
base amount increased by 32% and (iv) increased by 48%.3

4.2 Experimental Setup

The proposed approach was implemented in Python, using the
scikit-learn library [20]. To allow for some comparative results,
apart from our method we also evaluate the following competitors:
(i) a baseline RF model [16]; (ii) the EBF algorithm that our novel
PYP-EBF approach is inspired from [25]; and (iii) a popular kernel-
based approach that relies on similarity criteria selected in an ad-
hoc manner, namely the label propagation (LP) algorithm [2]. All the
evaluated RF-type algorithms, i.e. PYP-EBF, EBF, and RF, comprised
500 samples (trees). The truncation threshold, C, of our approach is
set to C = 10. This selection is reasonable, since we do not expect
more than 10 distinct binary classification patterns in the limited
available dataset. In all cases, the criterion used for retaining a
proposed split in a sampled tree is the Gini impurity index, as
suggested in [25]. The LP algorithm is evaluated using the RBF
kernel, which is the default selection in the scikit-learn library. All
the developed models are run on a Desktop PC, and do not require
any specialized hardware, e.g. graphical processing units (GPUs).

3Note that, since actual VAT returns and VAT audit results are used, we are restricted
from disclosure of the actual threshold values, as they constitute privileged information.
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Figure 5: Left to right: Recall Scores: Base Scenario + 48%, 32%, 16%, 0%, respectively.

4.3 Results

Our quantitative evaluation is performed on an out-of-sample ba-
sis, that is on test data different from the training set. To this end,
we perform 4-fold stratified cross-validation. In Fig.2 to Fig.5, we
concisely illustrate the obtained performance of the evaluated al-
gorithms. Specifically, we summarize the misclassification error,

precision score, recall score, and F1 metrics obtained over the con-
ducted four folds of cross-validation in the form of box-plots. We
provide this illustration across all the four considered experimen-
tal scenarios (alternative tax yield thresholds). As we observe, our
approach yields a significant performance improvement over the
competition, which is consistent across all the employed evalua-
tion metrics. Even more importantly, the obtained performance
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appears to be robust to an increase in the adopted audit threshold
value. These outcomes provide overwhelming empirical evidence
that our method offers a significantly more reliable outcome than
the state-of-the-art in the field, thus better addressing the need of
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tax authorities to maximize the returns from the audits they can
perform with their limited available resources.

Further, in Fig. 6 we demonstrate the computational times re-
quired for model training and testing, both in the case of our ap-
proach and the considered competitors. As we observe, the training
time of PYP-EBF is increased over the alternatives, but only moder-
ately so. This was expected, since our proposed approach entails
fitting more parameters; this normally induces some computational
overhead. On the other hand, the time required for generating
predictions on our test set (which comprised almost 7,500 cases)
exhibits only a barely notable increase over the competition. This
finding vouches for the viability of our solution, which allows for a
significant improvement in the quality of the audit case selection
process, without compromising computational tractability. This
is important for tax authorities, which need rapid development
and response times, and cannot easily invest in high-performance
computing facilities.

4.4 An Insight on the Power-Law Behavior

Further, we needed to examine how many mixture components
remain effective after model training, and whether the fitted PYP-
EBF model does actually yield a heavy-tailed distribution over the
inferred components. To this end, in Fig. 7 we plot the component
weight posterior expectations, (@.(v)), of the fitted PYP-EBF model,
where we employed a truncation threshold C = 10. As we observe,
our model yields two dominant components, and another three
components with much lower weights. The remainder half of the
initially postulated components effectively remain empty. This is
an important outcome, as it corroborates both the usefulness of the
power-law property of our model, as well as its capacity to infer
how many components it actually needs, irrespectively of how big
the truncation threshold is.

4.5 Comparison to deep learning

Finally, we examine the efficacy of a deep learning algorithm in the
same setting. This is an important investigation, as deep learning
solutions increasingly dominate the machine learning landscape.
Specifically, we use the available data to train a conventional dense-
layer deep network. Since the observations are 47-dimensional, the
trained deep network comprises two dense hidden layers with 40
and 40 state-of-the-art ReLU units, respectively, regularized via the
prominent method of Dropout [24] and trained via AdaGrad. We
implemented this network in Tensorflow [17]. To obtain a statisti-
cally significant evaluation outcome, we perform 4-fold stratified
cross-validation to select the hyperparameters (e.g., learning rate,
batch size, etc.), as previously.

As we illustrate in Fig. 8 (confusion plot) the obtained perfor-
mance is clearly disappointing. This lackluster outcomes apparently
originates from the network completely failing to detect the neg-
ative class; indeed, network performance in the negative class is
almost random in all scenarios. This corroborates our intuition that
in the absence of large corpora of audited taxpayers, state-of-the-art
techniques from the field of deep learning fail to yield any meaning-
ful predictive outcome, as they become clearly unable to train. Note
also that, in order to train this deep network, we needed specialised
hardware, specifically a GPU, in contrast to the proposed approach.
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5 CONCLUSIONS AND FUTURE WORK

In this paper, we attacked a problem of major significance to Euro-
pean tax authorities, namely the effort to reduce the VAT-gap[12].
In this context, we devised a novel solution to the selection of tax-
payers the potential audit of which may generate satisfactory yield.
To this end, we relied and extended upon an algorithmic framework
currently popular among tax authorities. i.e. RFs.

Specifically, our work was based on EBFs, which offer a prin-
cipled (Bayesian inference) framework for obtaining a posterior
distribution to draw the forest parameters (trees) from. Our method
aimed to resolve a significant issue of EBFs, namely the fact that
they are not designed for handling data that entail non-stationary
nature, multiple modalities, or discontinuities; these are prevalent
characteristics of tax return data, as is the case with other real-world
applications as well. Our novel approach consists in postulating a
(possibly) infinite mixture of EBFs, with each one meant to capture
a single classification pattern that dominates a fraction of the ob-
servations space. To allow for the case of a power-law distribution
of the available data over these patterns, we postulated a PY pro-
cess prior over the data point assignment to component EBFs. We
devised an efficient approximate inference algorithm for our model,
based on the variational inference paradigm.

We performed a thorough experimental evaluation using a real-
world dataset of filed VAT returns and corresponding audit out-
comes, obtained from a EU tax authority. Our comparative results,
considering both currently used RF-type approaches, as well as
a deep learning baseline popular among machine learning prac-
titioners, were extremely supporting of our solution. Specifically,
PYP-EBF completely outperformed the alternatives, by a large mar-
gin, with respect to the obtained missclassification error, precision,
recall, and F1 scores, over four different evaluation scenarios. This
offers conspicuous empirical evidence supporting the efficacy and
the usefulness of our approach. We also underline that these gains
come for negligible computational overheads.

Currently, we aim to further and deepen our research work by ex-
amining how our methods can be leveraged to address other sources
of tax evasion. Indeed, it is common practice for tax administrations
to cross-validate and reconcile items declared in the tax returns
of corporation tax and VAT, like revenue; a taxpayer who filed
substantially different revenue amounts should expect an enquiry
from the tax authorities. Therefore, taxpayers who under-declare
revenue in their VAT returns are also expected to under-declare
revenue for direct taxation purposes, and vice versa, so as to avoid
attracting the scrutiny of tax authorities. Since VAT evasion and
direct tax evasion are correlated, a model that combines raw data
from both VAT returns and direct tax returns and performs joint
audit case selection for both should yield higher accuracy compared
to models addressing VAT and direct taxes separately. This remains
to be confirmed in the context of our future research endeavors.
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