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Multiple-Identity Image Attacks Against
Face-based Identity Verification

Jerone T. A. Andrews, Thomas Tanay, and Lewis D. Griffin

Abstract—Facial verification systems are vulnerable to poison-
ing attacks that make use of multiple-identity images (MIIs)—
face images stored in a database that resemble multiple persons,
such that novel images of any of the constituent persons are
verified as matching the identity of the MII. Research on this
mode of attack has focused on defence by detection, with no
explanation as to why the vulnerability exists. New quantitative
results are presented that support an explanation in terms of the
geometry of the representations spaces used by the verification
systems. In the spherical geometry of those spaces, the angular
distance distributions of matching and non-matching pairs of
face representations are only modestly separated, approximately
centred at 90 and 40-60 degrees, respectively. This is sufficient for
open-set verification on normal data but provides an opportunity
for MII attacks. Our analysis considers ideal MII algorithms,
demonstrating that, if realisable, they would deliver faces roughly
45 degrees from their constituent faces, thus classed as matching
them. We study the performance of three methods for MII
generation—gallery search, image space morphing, and repre-
sentation space inversion—and show that the latter two realise
the ideal well enough to produce effective attacks, while the
former could succeed but only with an implausibly large gallery
to search. Gallery search and inversion MIIs depend on having
access to a facial comparator, for optimisation, but our results
show that these attacks can still be effective when attacking
disparate comparators, thus securing a deployed comparator is
an insufficient defence.

Index Terms—Face verification, face recognition, data poison-
ing, face morphing, biometric spoofing, deep learning, multiple-
identity images.

I. INTRODUCTION

B IOMETRIC identifiers, such as face images, are com-
monly employed to verify the identity of individuals—

capitalising on the distinctiveness of the identifier, its stability
of appearance, and its fixed linkage with the identity. Recent
advances in deep learning have enabled the development
of algorithms that compare live and stored reference face
images to automate this verification [1], [2], [3], [4], [5].
Increasingly such algorithms are being used for access control
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(e.g. international border crossing, banking access, and facility
entry) [6].

An adversary attempting to defeat a face-based identity
verification system has three options [7]: (i) avoid the system;
(ii) disguise the live face; or (iii) poison the stored face-identity
pairs. This paper is concerned with poisoning attacks.

Consider a database of stored face images. The simplest
form of poisoning attack is to contrive an incorrect pairing:
say the face image of A paired with the identity of B. This
allows individual A to pass as individual B; which can serve
either the aim of pretending to be B, or avoiding notice as
being A. Achieving this incorrect pairing should be difficult
though, as generally A and B will look different. Furthermore,
great care is typically taken when establishing the pairings in
the database—for example, by requiring trusted individuals to
attest that the stored image is a good likeness of the person
with whom it is to be paired.

A subtle way to bypass the safeguards against poisoning
makes use of multiple-identity images (MIIs), which are face
images that resemble more than one person. Assuming, for
now, that MIIs are possible we explain how they would be
used. Suppose A wishes to access some facility without their
identity being detected. A works with an accomplice B to
prepare an MII resembling both A and B, and arranges for
it to be stored in the database paired with the identity of B.
This storage could be achieved by creating a new entry in the
database or by updating an old one for B—in either case the
safeguards against poisoning are circumvented since the MII
resembles B. Having poisoned the database, A will now be
able to access the facility undetected as their live face will
match the stored MII and they will be verified as B.

Verification systems are used in a variety scenarios with
differing restrictions on the capture of reference and live
images. The most restricted type are exemplified by passport
photographs which can be captured only under constrained
conditions of pose, illumination and expression. At intermedi-
ate level are systems that use face photographs captured by a
webcam or mobile phone. The least restricted type are walk
past systems, collecting face images without subject partici-
pation. In this paper, we examine the issue of MIIs, where
the verification system is trained for use in the unconstrained
setting.

The aims of this paper are: (i) to explain why MIIs are
possible in principle; (ii) to show that MIIs can be realised well
enough to be used practically; and (iii) to show that securing
a face comparator does not prevent these attacks.

Our analyses will make use of the representation spaces that
are used by automated methods of face verification. For the
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first aim, we will investigate the distribution of faces within
a representation space. For the second, we will present one
method that constructs MIIs directly in image space, and
a second method that constructs MIIs first in representation
space and then in image space. For the third, we will show
that the representation spaces of different comparators are
sufficiently similar to permit the transfer of MIIs.

In Section II we give an overview of related work. In
Section III we introduce the datasets and face comparators
that we experiment with. In Section IV we offer an explana-
tion as to why face comparators are theoretically vulnerable
to MIIs; and consider the behaviour and performance of a
hypothetical ideal method for MII generation. Subsequently,
in Section V-B, we outline three methods for either finding,
constructing, or synthesising MIIs—showing that real MIIs
can be generated that are sufficiently close to ideal MIIs
that they are effective attacks. In Section VI we evaluate the
effectiveness of generated MIIs, as well as the transferability
of MIIs to novel comparators. In Section VII we discuss the
inherent vulnerability of face comparators to MIIs in light of
our findings; and conclude in Section VIII.

II. BACKGROUND

In this section, we provide an overview of input attack
generation and input attack detection.

A. Input Attack Generation

Here we review two distinct paradigms for input attack
generation: image space and representation space. Both were
originally developed for innocuous tasks—in the creative
industries, but have subsequently been re-purposed for MII
generation.

1) Image Space: Image morphing is the process of gen-
erating a sequence of photorealistic interpolations between
two images [8]. Seminally, [9] demonstrated the vulnerability
of two commercially available face verification systems to
MII attacks generated using morphing. The morphs in that
case were constructed by geometrically warping [8] and then
colour interpolating two face images. Attacks of this type have
been shown to be highly effective [10], even deceiving human
experts [11].

The warping step is crucial, and reliant on precisely iden-
tified common landmarks. This approach to face morphing
thus works best when both images are frontally aligned,
but even then there are often cues to manipulation. Several
works have attempted to improve the visual quality of facial
morphs, in particular, by: manual replacement and movement
of correspondence points [12]; manual retouching [9]; splice
morphing [13]; the restrictive selection of similar input im-
ages [14]; and Poisson image editing [15]. Although successful
in creating an image that matches two identities, at present
image space morphing still tends to leave artefacts that cue
the manipulation [16], [12].

2) Representation Space: A very different approach to im-
age generation utilises algorithms that can synthesise a realistic
image from a representation space encoding. Significantly,
[17], [18] found that when inverting deep representations,

several layers preserve accurate image-specific information.
For example, [19] utilised a deconvolutional neural network,
and adversarial training, to generate high-quality images given
high-level representations. Similarly, [20] proposed to lever-
age approximate models of facial appearance for training a
generative model under adversarial supervision.

With attribute-conditioned image modification in mind (e.g.
changing the age or gender of a face), invertible conditional
generative adversarial networks [21] have also been proposed.
They task an encoder network with learning an inverse map-
ping from an image to both its latent and conditional attribute
representation, thus permitting the modification of images
by varying the conditional information. More recently, [22]
proposed an encoder-decoder scheme that forces the latent
representation to be invariant to the attributes. However, [23]
argue that decoupling the attribute values and the salient
image information is detrimental to attribute editing, since
the attributes represent the traits of face images. Therefore,
rather than enforcing invariance of the latent representation
to the attributes, [23] proposed an attribute classification
constraint on the generated images, such that editing is wholly
localised to the attributes one wishes to alter. Nevertheless, a
principal issue with face editing is the lack of permanence with
respect to the underlying identity of the original face image.
Consequently, [24] recently proposed an identity-preserving
conditional generative adversarial network for face ageing
synthesis, which ensures that the high-level representation of
a synthesised aged face remains close to the representation of
the original face.

Profiting from these substantial advances, it was recently
shown that MIIs could be synthesised [25] by following the
approach of [19]. However, [26] conjectured that the attacks
optimised in [25], for a specific face comparator, were unlikely
to generalise to dissimilar face comparators.

B. Input Attack Detection

Unsurprisingly, the vulnerability of face comparators, in
particular to image space face morphing, has fostered new
research into targeted defences [27], [28], [29], [16], [30],
which can be considered a specific problem within the field
of general image tampering detection [31]. Broadly speak-
ing, the defences are either no-reference or differential [26].
No-reference methods process single images, e.g. an image
submitted for enrolment to be stored; whereas, differential
methods compare an image, captured by a trusted source, to
its supposed corresponding stored database image.

Whilst we briefly review detection approaches below,1 each
proposed method suffers from the same underlying problem:
they generalise poorly when the training and testing distribu-
tions differ [32], [33]. In other words, they attempt to detect
a specific cue using a supervised training approach; and if an
attack avoids presenting this cue, then it will go undetected,
even if the MIIs present other clear cues to their nature.

1A comprehensive survey on face recognition systems under morphing
attacks can be found in [26].
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1) No-reference Detection: Texture descriptors, based on
hand-crafted shallow representations2 have been shown to be
effective for detecting image tampering, particularly when
combined with a supervised classifier [30], [34], [35], [28].
However, the descriptors used are typically of an extremely
high dimensionality. Consequently, [27] proposed deep super-
vised neural networks trained to detect face morphs, which
result in more manageable and expressive representations.

Amongst other approaches, [16] analysed changes in noise
patterns present with an image, since atypical changes imply
that an image was captured by multiple devices—i.e. an image
is likely to be the composite of multiple face images. Others
have proposed to detect JPEG double-image compression [13],
[36], premised on compression being an indicator of manipu-
lation. In [12], face morphing was found to affect the physical
validity of skin illumination.

2) Differential Detection: Far fewer works concentrate on
differential detection. In [29], a de-morphing strategy was
proposed, whereby a live image is subtracted from its stored
version, attempting to invert the morphing process, such that
if the stored image is an MII, then the subtraction process will
reveal two face images of two distinct individuals. However,
the method depends heavily on the conditions in which the live
image was captured [26]. Differently, [37] compare landmark
positions from live captured face images to stored versions,
measuring the angles between corresponding aligned landmark
position vectors. Nevertheless, due to high intra-class varia-
tion, the method cannot reliably detect signs of manipulation.

III. PRELIMINARIES

To begin, we introduce the datasets and face comparators
that we experiment with, and end by formally defining a
measure of MII attack success.

A. Datasets

We use three disjoint face image datasets, namely VG-
GFace2 (VGGF2) [4], Color FERET (C-FERET) [38], and
Flickr-Faces-HQ (FFHQ) [39].

VGGF2 [4] is an unconstrained face image dataset, consist-
ing of ∼3.3M loosely cropped JPG images of ∼9.1K persons,
hence ∼360 face images per person. The face images were
downloaded from Google Image Search, and vary in pose,
illumination, size and quality. The intra-class variation of these
images is representative of the variability that will be encoun-
tered by a verification system deployed in an unconstrained
environment.

C-FERET [38] is a constrained high-quality face image
dataset gathered in a semi-controlled environment, consisting
of ∼11.3K 512× 768 labelled colour and grey PPM images
of 994 persons (∼12 images per person). The face images
were collected over 15 sessions between 1993 and 1996. The
images vary in pose (13 unique yaw angles), eyewear, facial
hair, hairstyle, and ethnicity. The intra-class variation of these
images is much less than VGGF2.

2For example, Local Binary Patterns (LBP), Binarised Statistical Image
Features (BSIF), Scale-Invariant Feature Transform (SIFT), Speeded Up
Robust Features (SURF), and Histogram of Oriented Gradients (HOG).

FFHQ [39] is an unconstrained high-quality face image
dataset, consisting of 70K aligned and cropped 1024× 1024
unlabelled colour PNG images. The images were downloaded
from Flickr, and vary with regard to apparent age, hairstyle,
facial hair, ethnicity, eyewear, headwear, apparel, and image
background.

Pre-processing

For all images, face alignment was performed using the
dlib [40] HOG-based face detector and a facial landmark
predictor model [41]. The process retains only the most
confident detection per face image. If a face was not detected
then the image was discarded (∼11 %, ∼4 % and ∼1.4 % for
VGGF2, C-FERET and FFHQ, respectively). For a detected
face, the landmark predictor utilised an ensemble of regression
trees to estimate the position of 68 landmarks, which are
then used to transform each face to a canonical alignment.
Alignment ensures that: (i) the faces are centred; (ii) the eye
centroids lie on a horizontal line; and (iii) the faces are similar
in scale. Next, we resized and rescaled the images such that
they have a resolution of 128× 128× 3 with pixel values in
the range [0, 1]. For C-FERET, we discarded all face images
with a pose label corresponding to a nonzero yaw angle and
any persons with fewer than two face images. For each person
with more than two face images we only kept two.

In summary, we were left with: (i) ∼2.8M VGGF2 train set
partition (VGGF2train) images; (ii) ∼152K VGGF2 evaluation
set partition (VGGF2eval) images; (iii) ∼69K FFHQ images;
and (iv) ∼2K C-FERET images of 993 persons. Examples
of the pre-processed face images are shown in Figure 1; and
Figure 2 compares the intra-class variability of VGGF2eval and
C-FERET.

Dataset Usage

Note that all MIIs were constructed for face image pairs
sampled from the C-FERET dataset. We used VGGF2eval for
face verification threshold determination, and VGGF2train for
a gallery search attack (in Section V-A), which utilises a real
image (sampled from VGGF2train) as an MII image. FFHQ was
solely used by the representation space MII attack method for
learning how to generate face images given a representation
space encoding.

B. Face Comparators

In this work we employ three publicly available pre-
trained softmax induced facial recognition neural networks:
SENet128 [42], SENet256 [42], and LtNet256 [5].3 All three
networks output representations that can be used for face
comparisons.

SENet [42] integrates squeeze-and-excitation (SE) blocks
into a standard 50 layer residual network (ResNet) [43] archi-
tecture. SE units dynamically recalibrate channel-wise feature

3SENet128 and SENet256 are available at https://github.com/ox-vgg/
vgg face2, and are listed under the names SE-ResNet-50-128D and SE-
ResNet-50-256D, respectively. LtNet256 is available at https://github.com/
AlfredXiangWu/LightCNN, and is listed under the name LightCNN-29v2.

https://github.com/ox-vgg/vgg_face2
https://github.com/ox-vgg/vgg_face2
https://github.com/AlfredXiangWu/LightCNN
https://github.com/AlfredXiangWu/LightCNN
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Fig. 1. Examples of the pre-processed aligned face images: VGGFace2 (top row); Color FERET (middle row); and FFHQ (bottom row).

(a) VGGF2eval

(b) C-FERET

Fig. 2. Examples depicting the difference in intra-class variation between the
VGGF2eval and C-FERET datasets. Each column in Figures 2a and 2b shows
two images (one considered a reference image and the other considered a live
image) from a unique identity. It is clear that the two images, per identity,
vary much more for VGGF2eval than for C-FERET.

responses by explicitly modelling the relationships between
channels, resulting in greater overall representational power.
Both SENet128 and SENet256 were first pre-trained on the
MS-Celeb-1M [44] dataset, and then fine-tuned on the original
VGGF2train [4] dataset of 8631 persons, using a softmax-based
loss. At this point, SENet128 and SENet256 had the exact same
weights.

A final stage of training was performed by projecting from
the penultimate 2048D layer to either 128D (SENet128) or
256D (SENet256), and then fine-tuning the entire model by
performing classification, i.e. 128 7→ 8631 or 256 7→ 8631.
Hence SENet128 and SENet256 have different weights at every
layer.

LightCNN [5] is a convolutional architecture consisting
of 29 layers, utilising ResNet-inspired residual blocks, but
using Max Feature Map (MFM) activation functions rather
than ReLU [45] nonlinearities, implementing a variant of
Maxout [46]. MFM enforces a sparse relationship between
consecutive layers by combining two feature maps and out-
putting their element-wise maximum. Moreover, no batch
normalisation (BN) is used within the residual blocks. The
penultimate layer containing the face representation is fully-
connected with an MFM activation, as opposed to a global
average pooling layer, which results in 256D representations.
The network was trained on the CASIA-WebFace [47] and
MS-Celeb-1M [44] datasets with a fully-connected classifi-
cation layer over 80 013 identities. We denote this model as
LtNet256.

1) Face Representations: Consider a facial recognition
neural network trained over a set c of known identities.
Ignoring the classification layer, one can take some interme-
diate layer as a representation of facial appearance. Following
normal practice, we will use the layer immediately before
the classification layer as giving an encoding of the input
image into a representation space. Again following normal
practice, we normalise the vector of outputs from this layer
so that the network, parameterised by ω, performs a mapping
fω : X → Sd−1 ⊂ Rd; where X is the image space, d is the
number of units in the final layer, and Sd−1 is the unit (d− 1)-
sphere. For compactness we denote the representation of an
image p as p̃ = fω(p).

2) Representation Distances: Given two face representa-
tions, p̃ and q̃, we use angular distance to quantify their visual
disparity, which for unit-length vectors is defined as:

θ(p̃, q̃) = arccos(p̃ · q̃) ∈ [0, π]. (1)

3) Performance Metrics: Let P+ and P− denote the sets
of face representation pairs (p̃, q̃) of matching (same iden-
tity) and non-matching (different identities), respectively. The
evaluation of a face comparator is typically performed by
determining a distance threshold ε for the binary classification
of samples drawn from P+ and P−.

The true acceptance rate (TAR) for ε is defined as the
fraction of P+ that have a distance less than ε. Conversely, the
false acceptance rate (FAR) is defined as the fraction of P−

that have a distance less than ε. A two-dimensional receiver
operating characteristic (ROC) curve depicts the relationship
between the FAR and TAR, as ε varies, with the area under
the curve (AUROC) equal to the probability that a random
(p̃, q̃) ∈ P+ has a lower angular distance than a random
(p̃, q̃) ∈ P−. Furthermore, the strength of a face comparator
fω is typically assessed by computing the TAR at some
specific FAR.

4) Comparator Performance: To assess the performance of
SENet128, SENet256 and LtNet256, we utilise the VGGF2eval
dataset, which consists of faces of persons unused during train-
ing of any of the comparators. For threshold determination, we
compute the TAR at FAR p ∈ {0.001%, 0.01% . . . , 10%}—
using all possible image pair combinations—which results
in the set {ε0, ε1, . . . , ε4}. The probability density plots, in
Figure 3, show the angular distance of pairs sampled from
either P+ or P−, with the thresholds {ε0, ε1, . . . , ε4} of
each comparator overlaid. According to Table I, the angular
distances between pairs, in particular those sampled from
P+, across the face comparators, exhibit a positive linear
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TABLE I
PEARSON CORRELATION COEFFICIENTS

SENet256 LtNet256

SENet128
P+

P−
0.942

0.691

0.889

0.478

SENet256
P+

P−
0.882

0.489

Pearson correlation coefficients between angular distances according to the
three face comparators.

TABLE II
PERFORMANCE SUMMARY OF THE FACE COMPARATORS

AUROC
TAR at FAR p

0.001 %
(ε0)

0.01 %
(ε1)

0.1 %
(ε2)

1 %
(ε3)

10 %
(ε4)

SENet128 98 .8 52.8 70.4 83.0 91 .8 97 .2

SENet256 98.4 49.7 68.3 81.9 91.1 96.5

LtNet256 98.1 61 .4 75 .2 84 .4 91.1 95.8

Performance (in %) of the three face comparators on the hold-
out VGGF2eval set. Reported is the AUROC and TAR at FAR
p ∈ {0.001%, 0.01% . . . , 10%}. Italics indicate the best performance per
column.

correlation. Thus, to a degree, each comparator is roughly
performing in a similar manner; although, the arrangement
of the face representations may differ from comparator to
comparator.

Table II reports the performance, showing that the three
comparators perform at similar levels. Following FRONTEX4

guidelines, it is recommended that deployed facial verification
systems—in automated border control scenarios—should em-
ploy a threshold that gives a FAR of 0.1 %, i.e. ε2. We will
primarily focus on the ε2 threshold throughout the remainder
of this work. At ε2, SENet128, SENet256 and LtNet256 have a
TAR of 83.0 %, 81.9 % and 84.4 %, respectively, which implies
that LtNet256 is the strongest comparator.

C. Performance of a Multiple-Identity Image Attack

Consider an adversary (p) and accomplice (q), and images
of them pref,plive,qref and qlive, where the reference images
are used to generate the MII, and the live images are those
captured at (for example) the entrance to a facility which will
be compared to the MII. Let h : X 2 → X be a method to
generate MIIs, so that h(pref,qref) is the attack image. The
attack will be successful if and only if

θ(p̃live, fω(h(pref,qref))) ≤ ε (2)

and

θ(q̃live, fω(h(pref,qref))) ≤ ε. (3)

One condition representing the MII being accepted as a
good likeness suitable for database storage, and the other

4European Agency for the Management of Operation Cooperation at the
External Borders of the Member States of the European Union.

representing identity verification at the facility. Using an MII
angular distance defined as

θ((ã, b̃), c̃) = max{θ(ã, c̃), θ(b̃, c̃)}, (4)

the success condition can be rewritten as:

θ((p̃live, q̃live), fω(h(pref,qref))) ≤ ε. (5)

We define the overall success rate of h as the fraction
of successful attacks for randomly chosen pairs of distinct
individuals.

IV. WHY ARE MULTIPLE-IDENTITY IMAGES POSSIBLE?

We now consider the behaviour and performance of a
hypothetical ideal method for MII generation. In later sections
we will examine how well existing methods of MII generation
realise this ideal. Breaking the problem in two like this will
help in understanding why it is that MII attacks are possible.

The ideal MII attack method h? : X 2 → X needs to min-
imise the MII distance

θ((p̃live, q̃live), fω(h
?(pref,qref))) (6)

to maximise its rate of success; and it must do this with
reference only to pref and qref, without direct knowledge of
plive and qlive, which do not yet exist at the time the MII
is generated. The best that can be done is to assume that
p̃live ≈ p̃ref and q̃live ≈ q̃ref and thus aim to minimise the
approximately equal MII distance

θ((p̃ref, q̃ref), fω(h
?(pref,qref))). (7)

This proxy objective is easy to solve—h? must generate an
image whose representation is the spherical midpoint of the
representations of the reference images, i.e.

m̃ref = fω(h
?(pref,qref))

= (p̃ref + q̃ref)‖p̃ref + q̃ref‖−1
2 , (8)

which gives us:

θ((p̃live, q̃live), m̃ref) ≈ θ((p̃ref, q̃ref), m̃ref)

=
1

2
θ(p̃ref, q̃ref). (9)

Observe that the MII distances in this equation can be com-
puted without actually implementing the ideal MII generator
h?.

We have computed the MII distances for the ideal generator
h?. In steps: for each identity p we select distinct images
pref and plive; we randomly pair individuals p and q to act
as adversary and accomplice; for each pairing we compute
m̃ref, the representation of the ideal MII based on the reference
images; using that we compute the ideal MII distance as
θ((p̃live, q̃live), m̃ref).

The distribution of ideal MII distances is shown in Figure 4
for attacks against all three face comparators, and when the
reference and live images are drawn either from VGGF2eval
or from C-FERET. Each plot also shows the distribution of
angular distances between P+ and P− pairs from the same
dataset. Additionally the plots show the distribution of half
P− distances, which from (9) we expect to approximate the
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(a) SENet128
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(b) SENet256
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(c) LtNet256

Fig. 3. Angular distance probability density plots of face representation pairs in P+ (pale blue) and P− (dark blue), where P+ and P− are sampled from
VGGF2eval. Overlaid are five different thresholds εi, i = 0, . . . , 4 (vertical lines), based on the TAR at FAR p ∈ {0.001%, 0.01% . . . , 10%}.

MII distances. Finally, the plots show the ε2 threshold that MII
distances need to be below for an attack to succeed. There is
much to see in Figure 4:
— In all plots the P−/2 distances (dashed) are fully below

the ε2 threshold. Thus if an attack could achieve these
distances it would always be successful.

— The ideal MII distances (red) are always greater than
P−/2 distances, since the MIIs are at the midpoints of
the reference images, but are compared to the live images.

— For C-FERET images, for which intra-class variation is
small, the MII distances are only slightly larger than the
P−/2 distances, so the great majority (∼95%) of ideal
attacks would succeed.

— For VGGF2eval images, for which intra-class variation
is larger, the MII distances are substantially larger than
P−/2 distances, but still much less than P− distances;
resulting in attack success rates of ∼40%.

In summary: if an adversary can ensure that reference
and live images are very similar, then MII attacks will very
likely succeed if the generator used is near ideal. The attack
exploits the fact that a comparator computes distances between
face images that are a compound of real face differences
and incidental differences due to ageing, hairstyle, etc. An
adversary can take advantage of this by constructing an MII
which minimises incidental differences from its reference
images and whose real difference from its reference images is
only half the normal distance for a pair of mismatched faces.

It remains to be explained why an MII that is half the
normal mismatch distance from its reference images is so
clearly below the threshold distance; equivalently, how come
P− distances are mostly above the threshold and P−/2 mostly
below? The answer is that the P− distribution is tight, and the
position of the ε threshold (determined by the desired FAR) is
necessarily in its left tail. Change either fact and MIIs would
not succeed as often.

On the narrowness of the P− distance distribution, observe
that it is centred around π/2, the angular distance for orthog-
onal points. This indicates that face representations are very
widely distributed on the sphere Sd−1. Indeed, it can be shown
that, for points uniformly distributed on Sd−1, the angular
distances are normally distributed with mean π/2 and standard
deviation d−1. The standard deviations of the P− distances for
the three comparators are slightly larger, i.e. ∼2d−1, indicating

that face representation are not fully uniformly distributed over
Sd−1, but are sufficiently uniform to give the tight distribution
observed.

On the position of the ε threshold, observe that setting it
lower would substantially impact the TAR rate, leading to
unusable systems. This is the case because the comparators
have achieved an acceptable FAR/TAR trade-off with P+

distances that are only modestly below orthogonal, rather than
near zero. In plain terms, the current generation of comparators
work because the representations of different identity faces are
always close to orthogonal, and the representations of same
identity faces are only slightly closer than orthogonal. This
leaves them vulnerable to attack as an MII image can be much
closer to its constituent faces than orthogonal.

V. GENERATING MULTIPLE-IDENTITY IMAGES

Here we outline three methods for either finding, construct-
ing, or synthesising MIIs. Our aim is to show that real MIIs
can be generated that are sufficiently close to ideal MIIs that
they are effective attacks.

A. Finding Multiple-Identity Images by Gallery Search

The simplest form of attack uses a real face image as MII,
chosen from a gallery to be as close as possible to both
reference images.

Formally, let (pref,qref) ∈ P− be the reference images
of the adversary and accomplice, and let G be a gallery
of face images that they have access to. We define the
gallery search MII (GS-MII) generator hGS as picking the
mref = hGS(pref,qref) in G such that θ((p̃ref, q̃ref), m̃ref) is
minimised, i.e. the gallery image whose representation is as
close as possible to the reference representations. Note that this
attack makes use of representation distances, so the adversary
needs access to a comparator to compute them—and this
comparator may be the same or different to the one attacked.

B. Constructing Multiple-Identity Images in Image Space

Face morphing is the image space process of geometric
warping and then colour interpolating two distinct face images
into a single composite [9], [32].

We use the following, standard, process to construct image
space MIIs (IS-MIIs). Given a pair of frontally aligned face
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Fig. 4. Angular distance probability density plots of MII distances for an ideal attack method, i.e. θ((p̃live, q̃live), m̃ref) (red); the distributions of angular
distances between P+ (pale blue) and P− (dark blue) pairs; and the distribution of P− paired angular distances divided by two (corresponding to the case
when p̃live = p̃ref and q̃live = q̃ref), denoted as P−/2 (dashed grey). Figures 4a to 4c use the unconstrained VGGF2eval; and Figures 4d to 4f use the
constrained C-FERET dataset of frontally aligned images. Overlaid is the ε2 threshold (vertical line) based on the TAR at FAR p = 0.1% computed using
matching and non-matching pairs sampled from VGGF2eval, which is the threshold used for all plots.

images, say (pref,qref) ∈ P−, an IS-MII is constructed as
follows: (i) corresponding facial landmark position vectors
are determined in pref and qref using the dlib landmark
detector [41]5; (ii) Delaunay triangulation [48] is performed on
the average of the two sets of landmark position vectors; (iii)
an affine transformation is applied to the image within each
triangle to transform pref and qref to the averaged positions,
which results in two warped images; and (iv) the two warped
images are averaged to give an IS-MII mref = hIS(pref,qref).
Note that this method for generating MIIs does not require
use of a comparator.

C. Synthesising Multiple-Identity Images via Representation
Space

Assuming a face comparator has learnt disentangled high-
level representations that encode the identity of a face image,
then in principle we can learn an inverse mapping. That is,
we can learn to generate face images from abstract face repre-
sentations. Having learnt such a mapping, we can synthesise
MIIs by first constructing the ideal midpoint of the reference
image representations, and then synthesising a face image
corresponding to that midpoint.

Concisely, let gφ be a deconvolutional decoder, i.e.
gφ : Rd → X , parameterised by φ, and m̃ref denote the spher-
ical midpoint of p̃ref and q̃ref, where (pref,qref) ∈ P−. We
define a synthesised MII as mref = hRS(pref,qref) = gφ(m̃ref)
and will refer to it as a representation space MII (RS-MII).

5The detector results in 68 facial landmarks; in addition, we define 20
evenly spaced landmarks on the image boundary.

1) Model: To this end, we learn gφ, which is tasked with
reproducing the face image p ∈ X given its representation
p̃ = fω(p) ∈ Rd, where fω is a face comparator with fixed
weights. Inspired by [19], we learn gφ using a combination of
loss functions:

L = λpixLpix
1 + λadvLadv + λfeatLfeat

2 , (10)

where λpix, λfeat, λadv ∈ R≥0 are weights. For the autoencoding
pixel-wise loss Lpixel

1 , we utilise the mean absolute deviations:

Lpixel
1 =

1

n

n∑
i=1

‖gφ(p̃)− p‖1. (11)

Whilst the Lpix
1 loss enforces low-frequency correctness, it

generally fails to produce satisfactory results in terms of high-
frequency features. Therefore, we also learn an image patch
convolutional discriminator (PatchGAN) [49] dψ , parame-
terised by ψ, which attends to localised high-frequency details.
The PatchGAN moves across an image, classifying patches as
being either real or reconstructed. The discriminator and the
decoder are trained simultaneously. This process forces the de-
coder to attempt to produce reconstructions indistinguishable
from real data. Concretely, the discriminator parameters ψ are
learnt by minimising a least squares loss [50]:

Ldisc =
1

n

n∑
i=1

[dψ(p)− 1]2 + [dψ(gφ(p̃))]
2, (12)
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with the decoder trained to minimise:

Ladv =
1

n

n∑
i=1

[dψ(gφ(p̃))− 1]2. (13)

Lastly, the feature loss Lfeat
2 ensures that the representation

of a decoded image matches the representation of the original
image:

Lfeat
2 =

1

n

n∑
i=1

‖fω(gφ(p̃))− p̃‖22. (14)

2) Implementation: The encoder network fω is fixed and
is defined as SENet128.

Let ck denote a 4× 4 ConvTranspose-BN-ReLU layer with
k filters, stride 2 and padding 1 followed by a 3× 3 Conv-
BN-ReLU layer with k filters, stride 1 and padding 1. The
architecture of the decoder gφ is:

c512 − c256 − c128 − c64 − c32 − c16.

After the last layer, a Conv-Tanh layer is applied, producing
a 3-channel output. The output of gφ given a 1× 128 sized
input is a 128× 128× 3 image.

With respect to the discriminator dψ , we utilise a 70× 70
PatchGAN. Let ck be a 4× 4 Conv-BN-LeakyReLU layer
with k filters, stride 2 and padding 1. The slope of the
LeakyReLU activations is equal to 0.2. The discriminator
architecture dψ is:

c64 − c128 − c256 − c512.

The discriminator accepts inputs of size 128× 128× 3.
3) Model Training: The weights used in (10) were empiri-

cally set as follows: λpix = 10, λfeat = 300, and λadv = 1.
Training was performed on the FFHQ dataset (90 % for
training and 10 % for validation). The training set was aug-
mented by on-the-fly horizontal mirroring. For pre-processing,
with respect to the discriminator, the image pixels were all
normalised to the range [−1, 1]. The Adam solver was used
with a fixed learning rate of 2× 10−4, β1 = 0.5, and a batch
size of 32. The model was trained for 1000 epochs (50 000
iterations per epoch).

To stabilise training, the discriminator was updated using a
history of 500 previously reconstructed images, as opposed to
only the most recent. For inputs to the discriminator, we also
used additive Gaussian white noise, with µ = 0 and σ = 0.1,
which we linearly decayed to zero over the first 600 epochs.

D. Multiple-Identity Image Methods: A Comparison

There are certain caveats associated with each MII attack
method.
— GS-MIIs rely on access to a gallery G and a face

comparator fω , in order to find the best mref ∈ G for a
pair (pref,qref). For evaluation, we define G as the entire
VGGF2train set of ∼2.8M face images, and assume that
an adversary has access to the SENet128 comparator.

— IS-MIIs require frontally aligned face images, such that
corresponding landmarks between pref and qref can be
found.

— RS-MIIs depend on having access to a face comparator
fω , so as to train a decoder gφ. In our evaluation we fix
that the adversary has access to the SENet128 comparator
for this purpose.

In Figure 5, we show examples of MIIs generated using
the previously described methods, where p and q are sampled
from the C-FERET dataset of frontally aligned face images.
Qualitatively speaking, the GS-MIIs tend to resemble p and
q at only a rudimentary level; and are sometimes far from
satisfactory, in particular when p and q differ in ethnicity (e.g.
column 2), gender (e.g. columns 4, 5 and 15) or both (e.g.
columns 7, 11 and 12). The overarching benefit of GS-MIIs is
that they are real images, therefore free from visual artefacts.
In contrast, since IS-MIIs and RS-MIIs combine p and q when
constructing m, the MIIs have much better visual similarity to
both p and q. However, IS-MIIs suffer from visual ghosting
artefacts, and RS-MIIs lack detail at the transition between the
face and background.

VI. EFFECTIVENESS OF MULTIPLE-IDENTITY IMAGES

Here we evaluate whether generated MIIs are close enough
to ideal MIIs to make effective attacks. We also evaluate how
much the effectiveness of generated MIIs depends on whether
the comparator that is being attacked is the same as the one
used to generate the MIIs.

A. Experiment

We split the C-FERET dataset of frontally aligned images
into two disjoint sets (reference and live); each consisting of
993 face images of 993 unique persons. Each method for
creating MIIs is applied to the same 10K randomly sampled
unique pairings (pref,qref) from the reference set. We score
the effectiveness of a generated MII h(pref,qref) by the MII
distance, i.e.

θ((p̃live, q̃live), fω(h(pref,qref))). (15)

The overall score for an MII generator h is the fraction of these
distances which are less than or equal to some ε threshold.

GS-MIIs and RS-MIIs require a comparator for their op-
eration and we fix that to be SENet128; IS-MIIs do not
make use of a comparator. We evaluate the MIIs as attacks
against SENet128 (matched comparator mode), SENet256 (sim-
ilar comparator mode), and LtNet256 (mismatched comparator
mode).

B. Analysis and Results

In Figure 6, we compare the distributions of MII distances
for MIIs generated using the different methods, as well as the
effect on the distributions as we vary the comparator attacked.
The figure also shows the distributions of MII distances for
ideal MIIs (as discussed in Section IV). Clearly all forms of
generated MII fail to realise the optimal MII attack, but the
large amount of mass still below the ε2 threshold indicates
that they are successful more often that not. Table III gives
the exact MII success rates for a range of ε values, but we
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Fig. 5. Examples of random GS-MII (second row), IS-MII (third row) and RS-MII (fourth row) attacks given two non-matching images p (top row) and q
(bottom row). Each column denotes a unique attack given p and q.
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Fig. 6. Angular distance probability density plots of (15) for GS-MII (pale blue), IS-MII (medium blue), RS-MII (dark blue), as well as the MIIs distances
for an ideal attack method h? (red). Overlaid is the ε2 threshold (vertical line) based on the TAR at FAR p = 0.1%.

TABLE III
PERFORMANCE SUMMARY OF THE MII ATTACKS

MII 0.001 %
(ε0)

0.01 %
(ε1)

0.1 %
(ε2)

1 %
(ε3)

10 %
(ε4)

SENet128

GS 0.0 0.7 8.6 49.9 94.3

IS 3.6 14.8 37.2 68.3 93.0

RS 10 .6 39 .7 76 .9 96 .7 100 .0

SENet256

GS 0.0 0.2 3.8 29.5 81.5

IS 4.9 18.9 44.0 74.1 93.7

RS 8 .0 34 .0 71 .0 95 .3 99 .7

LtNet256

GS 0.0 0.1 1.4 13.5 57.6

IS 19 .7 42 .8 66 .4 85.7 97.0

RS 4.4 21.2 54.2 86 .8 98 .8

This table compares the performance of the three MII attacks: GS-MIIs,
IS-MIIs, and RS-MIIs. Performance corresponds to the percentage of MIIs
constructed that would be successfully verified with their corresponding
(p,q)pro pair, based on an ε threshold. Italics indicate the best performance
per comparator.

concentrate on ε2 corresponding to a FAR of 0.1% for normal
data.

The weak performance of GS-MIIs is evident and expected:
in matched comparator mode only ∼9% of MII attacks suc-
ceed, and in similar and mismatched mode this drops below
4%.

IS-MIIs perform much better than GS-MIIs. Against the
SENets less than half of IS-MII attacks succeed, whilst against
LtNet256 about two-thirds succeed. Note that since IS-MIIs
do not make use of a comparator in their construction these
differences in performance, depending on the comparator
attacked, are not due to matched vs. similar vs. mismatched
mode but reflect hidden differences in the vulnerability of
the networks. It is noteworthy that these differences are not
apparent from their performance on normal data which were
similar (see Table II).

RS-MIIs also perform much better than GS-MIIs. There is
no clear winner comparing RS- and IS-MIIs. For matched and
similar mode RS performs distinctly better than IS (77% and
71% vs. 37% and 40%), but for mismatched mode slightly
worse (54% vs. 66%).

VII. DISCUSSION

We now discuss issues arising especially with regards to
improvement; first from the adversary’s perspective, then from
the defender’s.

A. Improved Multiple-Identity Image Attacks

1) Reducing Detectability: GS-MIIs utilise real images that
undergo no form of manipulation, and are therefore only
detectable based on an MII being insufficiently similar to the
appearance of the adversary and accomplice.
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Contrastingly, there are clear and obvious cues of manip-
ulation for IS- and RS-MIIs. The former suffer from visual
ghosting artefacts; and the latter lack detail at the transition
between the foreground (face region) and background. Clearly,
more visually faultless MIIs can be constructed in both cases.
For example, rather than generating MIIs, where the generator
utilises the entire image, which includes the presence of
identity irrelevant non-facial features such as the background,
MIIs can instead be generated by binarising the image into
facial and non-facial regions, such that only the facial area
is manipulated prior to recombination with the background of
one of the constituent images.

With specific regard to IS-MIIs, which rely on the precise
specification of common image features for warping, advance-
ments in automated landmark localisation (e.g. utilising a
multi-task cascaded deep convolutional neural network [51])
are likely to offer improvements over the shallow landmark
predictor used in this work, thus reducing ghosting. Nonethe-
less, generating photorealistic morphed images totally free
from visual artefacts is still a challenging task. Heterogeneous,
and intertwined, factors of variation stemming from pose,
skin colour, hair style, etc. impact the realism of images
generated on the continuum. That is, slight errors in landmark
positioning inevitably give rise to ghosting, and these errors
are common when a (shallow or deep) landmark predictor is
learnt on a demographically biased dataset [52]. Therefore,
combining a deep learning based landmark predictor (trained
on an unbiased dataset) with both splice morphing [13] (con-
sidering only the facial region) and Poisson image editing [15]
(smooth transition of low frequency details) appears to be the
way forward. Note that regardless of improvements, IS-MIIs
assume that the structural relationship between face images
holds, i.e. that each face image is frontal, which is restrictive.
Consequently, to generate IS-MIIs where this condition does
not hold, an additional module will be required—e.g. a deep
generative model capable of generating a novel (frontal) view
of the face [53]. If, however, a deep generative neural network
is going to employed, then it brings into question the utility of
the entire IS-MII procedure, since one could instead employ
RS-MIIs, which are capable of generating MIIs regardless of
the pose of the reference images (when trained on face images
where pose is a factor of variation).

With specific regard to RS-MIIs, an image p can be mod-
elled as the composite of the foreground (pF ) and background
(pB) via a matting equation, i.e. p = (1−G)pF +GpB ,
where G is an occlusion matrix that determines the visibility
of background pixels. For instance, [54], [20] utilise a layered
conditional generative model that generates images based on
disentangled representations p̃ = [p̃F , p̃B ], where p̃F and p̃B
capture the foreground and background factors of variation.
This was shown to give visually pleasing results in the tasks
of attribute-conditioned image reconstruction and completion.
One negative, however, is that the method necessitates that
the foreground layer pF is observable during learning, i.e.
the method in its current form does not work unsupervised.
Alternatively, the foreground can be extracted utilising a copy-
pasting generative adversarial network recently proposed by
[55], where objects are segmented (wholly unsupervised) for

a given input image. The generator learns to discover an object
in an image by compositing it into a different image, with the
aim of fooling the discriminator into classifying the resulting
image as real.

2) Reducing the Gap to Ideal MIIs: As it turned out, in
Section V, the MII construction methods evaluated produced
suboptimal MIIs. This suggests that the studied attacks can be
made stronger, so as to fulfil their theoretical potential.

At present, the simplest solution for an adversary is to
ensure that reference and live images are very similar, so as to
increase the likelihood of an MII succeeding (assuming that
the generator used is near ideal). However, this is clearly not
always possible, especially as the time increases between when
the reference images were captured and the live images.

With respect to GS-MIIs, although we do not show the
dependency of their success rate on the gallery size—the larger
the gallery is the better a match can be found. We have
examined this and estimate that the gallery would need to
be ∼1B faces in order to achieve 50% success. This renders
GS-MIIs somewhat impractical, albeit far from impossible.

By considering the behaviour and performance of a hypo-
thetical ideal method for MII generation, an adversary could
examine how well their method of MII generation realises this
ideal. In particular, this can be done for IS- and RS-MII meth-
ods. Firstly, IS-MIIs can be made more ideal by optimising
methods for landmarking, warping and interpolation with the
ideal MII distance distribution in mind. Secondly, RS-MIIs
can be made more ideal by perhaps employing a lower level
intermediate representation that retains more image content,
e.g. a convolutional layer, since the learnt filters in earlier
layers are likely to be more similar across comparators than
later layers which specialise to their task and training data.

It should be noted that at present we do not currently know
to what extent the failures of photorealism are stochastically
moving IS- and RS-MIIs away from their ideals. Speculatively,
this may have an effect, therefore improving MII photorealism
would not only reduce their detectability, but could also assist
in reducing the current gap between MIIs as they stand and
their ideals.

3) Choosing the Right Accomplice: The ideal scenario
for an adversary-accomplice pairing (e.g. p and q) does
not necessitate that they are initially visually similar in any
regard. Throughout this paper, we represented this scenario
by generating MIIs based on randomly sampled image pairs
(pref,qref) ∈ P−. However, recall the scenario outlined in
Section I, where individual p wished to access some facility
without their identity being detected. If p works with a random
collaborator q to generate, for instance, an IS-MII, then they
would have a ∼66% chance of success attacking LtNet256. If,
however, p seeks out a collaborator q who, to some degree,
shares a resemblance, then the chance of success can be
improved. For example, constraining q to be within the 50%
of the population who are most visually similar to p (LHS
of the median in Figure 7), then the success rate increases to
∼77% (lower left quadrant in Figure 7 as a proportion of the
LHS of the median line). Clearly, further constraints would
see further improvements.



11

0.8 1.0 1.2 1.4 1.6 1.8
θ(f(pref. ), f(qref. ))

0.6

0.8

1.0

1.2

1.4

1.6

1.8

̅ θ(
(f

⋆
(p

liv
e)
,f

⋆
(q

liv
e)
),
f⋆

(h
IS
(p

re
f.
,q

re
f.
)))

ε⋆

median

Fig. 7. Each point corresponds to a pair of identities p and q. The horizontal
axis is the angular distance between their reference images according to the ad-
versarys comparator SENet256. The vertical axis is the MII distance according
to the comparator being attacked, which here is LtNet256 (mismatched with
adversary). Points below the ε2 line are successful attacks against LtNet256.
Points to the left of the median line correspond to adversary-accomplice
pairings that are fairly similar in appearance according to SENet256.

B. Improved Multiple-Identity Image Defences

1) Detecting MIIs: Both our IS-MIIs and RS-MIIs have
clear artefacts that a system could be trained to detect; but it
is very doubtful whether such systems would be able to deal
with improved versions of the MII generators. An arms race is
possible, but it is unlikely that regulated commercial systems
would be able to keep up with the nimbleness of unregulated
adversarial development. This is a consequence of the fact
that most detection pipelines employ supervised machine
learning algorithms, which have good generalisation ability
when the training and testing datasets are sampled from the
same distribution. Using deep learning methods, for example,
super-human performance [56] can be achieved at recognising
objects, places and people in consumer photography. This is
possible because the statistics of this data are stable over
time. In security applications, such as identity verification, the
statistics of the rare set (MIIs) cannot be assumed to be stable,
as adversaries seek to innovate and improve their methods.
Bluntly, with sufficient examples of MIIs, as they exist in
2019, a supervised learning system that detected MIIs until
2020 might be possible, but it would likely fail in 2021.

Anomaly (or novelty) detection systems, however, that
utilise unsupervised learning, trained only on the normal
dataset, would not have this inevitable obsolescence. Anomaly
detection learns the range and dimensions of normal variation,
so that suspicious deviations from this can be detected. For
instance, a latent space autoregression framework [57] based
on memory and surprisal is viable, since an anomalous event
can be expressed in terms of one’s capability to remember
it (e.g. sparse dictionary learning), as well as the degree to
which the event is surprising (e.g. in terms of probability).
We hypothesise that anomaly detection can be as effective at
detecting known signs as a supervised approach, but will also

be able to detect signs of improved MII attack methods.
2) Securing the Comparator: Our results in Section VI

significantly highlight the following: (i) poisoning attacks
optimised for one comparator can be very effective when
transferred to a disparate comparator that was initially trained
in the exact same way (prior to fine-tuning); and (ii) trans-
ferring attacks to completely different comparators (feature
domains) with dissimilar architectures and training data can be
effective—contrary to the assertion made in [26]. Furthermore,
considering the attacks were randomly generated, LtNet256
exhibits a substantial vulnerability to RS-MIIs optimised for
SENet128. Nevertheless, the results indicate that IS-MIIs are a
more fruitful attack, at ε2, when one does not have access to
a proxy face comparator that is similar to the comparator that
one wishes to attack—i.e. optimising RS-MIIs for SENet128
so as to attack SENet256.

The transferability of IS-MIIs and RS-MIIs should not
come as a surprise, since the angular distance distributions
P+ and P−, across the face comparators, exhibit a positive
linear correlation (recall Table I). Thus, to a degree, each
comparator is roughly performing in a similar manner—as one
would expect of discriminatively induced networks. Although
the arrangement of the face representations may differ from
comparator to comparator, if an MII is sufficiently similar in
one feature domain to pref and qref then it is likely to also
be similar in another. Therefore, securing a comparator is an
insufficient defence to poisoning attacks.

3) Improved Comparators: Face comparators are known to
be vulnerable to MII poisoning attacks [9], which is reinforced
by our results. Research on this mode of attack has focused on
defence [27], [28], [29], [16], [30], with little to no explanation
given as to why face comparators are vulnerable. Two aspects
of our analysis suggest directions for improvement.

First is the observation that some comparators are better
than others against IS-MIIs (which do not make use of a com-
parator), even though they have similar performance on normal
data. Understanding why may guide future development.

Second is what we observed with respect to the P+ and
P− distance distributions in Figure 3, i.e. the lack of clear
separation between the two. Comparators are typically learnt
by minimising a supervised softmax-based loss [4], [5], with
abstract high-level intermediate representations extracted for
the purposes of open-set verification. The discriminative ability
of the representations is a by-product of the training process,
and is not explicitly enforced, thus resulting in decision bound-
aries that do not directly maximise class separability beyond
what is necessary for discrimination. However, the popularity
of these approaches stems from the ease of their training,
since, for example, more direct metric learning approaches [2],
[1], which directly embed images into Euclidean space based
on relative relationships amongst inputs (minimising intra-
class variance and maximising inter-class variance) can be
difficult to train: (i) constraints are typically exponentially
large in number, but highly redundant, thus leading to slow
convergence; and (ii) mining informative and non-redundant
constraints to alleviate (i) is difficult and can lead to training
instabilities.

To overcome some of the issues outlined above, improved
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softmax-based losses have been proposed. For example, those
with the objective of: (i) penalising both the distance between
a sample and its class centre, in representation space, as
well as enforcing inter-class separability [58]; (ii) penalising
the distance between the centroid of each class [59]; (iii)
maximising the margin between the farthest intra-class sample
and its nearest inter-class neighbour [60]; or (iv) employing
angular-based margins [3], [61], [62], e.g. directly optimising
the geodesic distance margin on the hypersphere, so as to
enforce a larger margin between classes [63]. Nonetheless,
our distributional hypothesis still stands for such learning
paradigms. The primary difference being that direct meth-
ods may lead to lower ε verification thresholds, since the
distributions of angular distances of pairs in P+ and P− is
expected to have greater separation, thus potentially leading to
the rejection of a greater number of MIIs. However, since inter-
class separability is explicitly enforced, it becomes increas-
ingly likely that two random face images of different persons
will be orthogonal, which by implication means their optimal
MII is almost surely at an angular distance of π/4. Therefore,
as long as the ε threshold employed lies to the right of the
distribution of angular distances attained using idealised MIIs
(due to insufficiently reducing the intra-class variance) with
mean π/4, then a comparator remains theoretically vulnerable
to randomly constructed poisoning attacks.

Patently, the key to mitigating against randomised poisoning
attacks lies in reducing intra-class variance, especially in light
of the fact that algorithms for constructing MII attacks will
most likely continue to improve (reaching their theorised
potential). One solution would be to indefinitely contract
samples from the same class during comparator training [64],
[65]—by way of contrastive pairwise metric learning. That
is, matching pairs continue to contribute to the loss, in an
attempt to drive their angular distances to zero—beyond the
point needed to differentiate them from dissimilarly labelled
samples. However, this method of learning is known to cause
overfitting. Consequently, a balance must be struck between
robustness to MIIs and generalisation ability for open-set
verification. An adapted solution would be to ensure that the
P+ distribution of distances is well separated from the ideal
MII distribution of distances, as opposed to the P− distribution
of distances, employing for instance a histogram loss [66].

VIII. CONCLUSION

Face comparators are known to be vulnerable to MII poi-
soning attacks, which is reinforced by our results. However,
research on this mode of attack has focused on defence, with
little to no explanation given as to why face comparators are
vulnerable. In contrast, we provided an intuitive view on the
role of the face representation spaces used for verification,
arguing that the principal cause of the vulnerability is that
representations of different identity faces are always close
to orthogonal, and the representations of same identity faces
are only modestly closer than orthogonal. This is sufficient
for open-set verification on normal data but provides an
opportunity for MII attacks. Importantly, by considering the
behaviour and performance of a hypothetical ideal method for

MII generation, we were able to examine how well existing
MII generators realise theoretically optimal MIIs—permitting
one to establish the vulnerability of a specific comparator
to MIIs. In addition, we showed that transference of MIIs
from one comparator to another is made possible due to the
representation spaces of dissimilar comparators being suffi-
ciently similar, as such securing a comparator is an insufficient
defence.

It is unclear whether MIIs can be completely defended
against—although it is unlikely that any of our generated MIIs
(in Figure 5) would be mistaken for the constituent identities
by a human expert, we are not confident that this would still
be true for improved generation systems that get closer to the
ideal.
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