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Most papers on privacy attacks in ML focus on inferring:

1. Inclusion of a data point in the training set
(aka “membership inference”)

2. What class representatives look like
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Membership Inference (cnt’d)

Membership inference is a very active research area, not
only in machine learning...

Given f(data), infer if x € data (e.g., f is aggregation)
[Homer et al., Science’13] for genomic data
[Pyrgelis et al., NDSS’18] for mobility data

Well-understood problem, besides the more obvious leakage

Establish wrongdoing
Assess protection, e.g., from differentially private defenses
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2. Inferring Class Representatives

Prior work shows how infer properties of an entire class, - 7,
Model Inversion [Fredrikson et al. CCS’15] :@:
GAN attacks [Hitaji et al. CCS’17] &3

E.g.: given a gender classifier, infer what a male looks like

But...any useful machine learning model does reveal something
about the population from which the training data was sampled

Privacy leakage !'= Adv learns something

about training data
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How about if we inferred properties of a subset of the
training inputs...

...but not of the whole class?

In a nutshell: given a gender classifier, infer race of
people in Bob’s photos
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Agenda

1. Property Inference iIn
Collaborative/Federated ML

2. Membership Inference against Generative Models

Luca Melis, Congzheng Song, Emiliano De Cristofaro, Vitaly Shmatikov. Exploiting Unintended
Feature Leakage in Collaborative Learning. IEEE Symposium on Security & Privacy (S&P’19) 8



Deep Learning

f(x) = p(female) = 0.9 * Map input X to layers of hidden

* representations A, then to output y
() ()| hs =tanh(W; - hy)

* hyyq1 = a(W; - hy) with parameter W,

®* Train model to minimizes loss:

S X7/ !
W = argminy, L(f(x),y)

N, <

* * Gradient descent on parameters:
X = - = * Each iteration train on a batch
[: ,7 * Update W based on gradient of L
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Collaborative

Federated

Algorithm 1 Parameter server with synchronized SGD

Algorithm 2 Federated learning with model averaging

Server executes:
Initialize 6
fort =1to7T do
for each client £ do
g¥ «+ClientUpdate(6;_1)
end for

01 < 011 — T]Zk gf
end for

ClientUpdate(6):
Select batch b from client’s data
return local gradients V L(b; 0)

Server executes:

Initialize 69

m < maz(C - K,1)

fort =1to7T do
St < (random set of m clients)
for each client k € S; do

6F «ClientUpdate(6;_1)

end for
0, 3, 0

end for

ClientUpdate(0):
for each local iteration do
for each batch b in client’s split do
0 < 0 —nVL(b;0)
end for
end for
return local model 6




Passive Property Inference Attack

Save snapshots of joint  cqiculate the difference Infer information
model based on gradients

01 @
} [ Aggre:qated ]
gradients
— 0, @
' Aggregated
gradients
071

Adversary
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Active Property Inference Attack

Gradients on
Main Loss
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Images Gender/Smile/Age Race/Eyewear
Eyewear/Race/Hair

FaceScrub Images Gender ldentity
PIPA Images Age Gender
FourSquare Locations Gender Membership
Yelp-health Text Review Score Membership

Doctor specialty

Yelp-author  Text Review Score Author

CSlI Text Sentiment Membership
Region/Gender/Veracity
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Property Inference on LFW

task=gender/prop=race:black

Task score task=smile/prop=glasses:sunglasses
Gender  Sunglasses -0.025 | : |
Smile Asian 0.047 0.93 5 —-_—
Age Black -0.084 1.0 g .
Race Sunglasses 0.026 1.0
Eyewear Asian -0.119  0.91 0T
Hair Sunglasses -0.013 1.0 4 : 5 16 20 24
Number of participants
Two-Party Multi-Party

15



Feature t-SNE projection
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Passive vs Active Attack on FaceScrub

Main Task: A/@®= female/male
Inference Task: Blue points with the property (identity)

! ! ! !

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Passive attack Active attack
17



Inferring when a property occurs
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Property score

Inferring when a property occurs

Batches with the property appear

1.0 4Mix of gender appears Mix of gender disappears

4

Jm

500 1000 1500 2000 2500
Iterations

Main task: Age / Two-party
Inference task: people in the image are
of the same gender (PIPA)




Property score

Inferring when a property occurs

1.0
1.0 4Mix of gender appears Mix of gender disappears D1

Batches with the property appear Participant with ID 1 joins training
¢

T g A

500 1000 1500 2000 2500 0 100 200 . 300 400 500
Iterations lterations

Main task: Age / Two-party Main task: Gender / Multi-Party
Inference task: people in the image are Inference task: author identification
of the same gender (PIPA)
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Selective gradient sharing Property /% paramters 100%
share

Dataset: Text reviews Top region 0.84 0.86 0.93

Main Task: Sentiment classifier Gender 0.90 0.91 0.93
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Defenses?

Selective gradient sharing Property / % parameters
shared
Dataset: Text reviews Top region

Main Task: Sentiment classifier Gender

’ Veracit
Doesn’t really work... Y

Participant-level differential privacy
Hide participant’s contributions

Only two mechanisms in the literature

Fail to converge for “few” participants

0.84 0.86 0.93
0.90 0.91 0.93

0.94 0.99 0.99
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Machine Learning as a Service

HEl \icrosoft

amazon
Hll Azure

webservices
™\ Google
: &

Cloud model

Prediction API Training API

l Predictions are leaky! A -T
“ lllall.  Shokri et al. Membership inference attacks =
against machine learning models. S&P’17 L
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Generative model
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Membership Inference in Generative Models

Generative model

Generative API Training API

Jamie Hayes, Luca Melis, George Danezis, Emiliano De Cristofaro. LOGAN: Membership
Inference Attacks Against Generative Models. PETS 20109.
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Inference without predictions?

Use generative models!

Train GANs to learn the distribution and a prediction model at the
same time

Generator



White-Box Attack

- / 1) Predict 2) Sort scores  3) Take top scores
| Dbb(xl) = 0.30 \ / Dbb(xll = 0.99 \ 7]
Dbb(xZ) = 0.02 Dbb(xlz) = (0.98

— n
Adversary Dpp(23) = 0.79 Dyy(x:,) =095 |
. —_—

Dy \Dbb(xmﬂ.l) = 0-64/ \Dbb(xim+;1) = 0.01/




Black-Box Attack

1) Predict 2) Sort scores 3) Take top scores

/ Dpp(x1) = 0.30 \ / Dpp(x;,) = 0.99
Dbb(xZ) = 002 Dbb(xlz = O 98

Dypp(x3) = 0.79
bb (x3) Dpp(x;,) =095 | =

\Dbb(xm;l) = 0-64) \Dbb(xim.;;) = 0.01/



Datasets Models

LFW
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White-Box Results

CIFAR-10, random 10% subset

LFW, top ten classes
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Accuracy

1.0

Black-Box Results

CIFAR-10, random 10% subset

LFW, top ten classes
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Defense? Differentially Private GAN*

Accuracy

0.0

0 5 10 15 20 25 30
Epsilon
White-box, LFW, top ten classes

*Triastcyn et al. “Generating differentially private datasets using GANs.” arXiv 1803.03148
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