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Abstract—The central community of social networks, usually
represented through the highest degree k-core of the corre-
sponding graph, is proposed here as a compact representation
of large social networks. We show that the central community
of egocentric social media networks, such as the ego networks
on Twitter and Instagram, tell us much more about the actual
influence of the ego than the whole egocentric network itself. We
also propose a novel genetic algorithm for the identification of
central community of egocentric social networks and we examine
the importance of the proper initialisation of this algorithm. The
actual Twitter ego networks we used in our experiments along
with the corresponding Python code are made publicly available
for anyone who wishes to use them.

Index Terms—degeneracy, graph partitioning, community de-
tection, social networks, genetic algorithms, k-core, twitter ego-
networks

I. INTRODUCTION

The k-core of a graph is a maximal subgraph in which
each node has at least degree equal to k, i.e., it has at least
k neighbours. The typical structure of social networks is a
bushy one [1] and as a result the k-core of the corresponding
graph consists of several disconnected components [2]. This
is not the case, however, for egocentric networks where the
k-core, for high values of k, is usually a single component
organised around the ego. The k-core corresponding to the
degeneracy (hereafter the degeneracy core), i.e., the maximum
k for which a graph contains a k-core, corresponds to the
densest part of graph. In many cases, and especially for large
social networks like the ones created through contemporary
social media such as Facebook, Instagram and Twitter, the
study of the degeneracy core provides more robust measures
than the study of the whole network. Furthermore, the study
of the degeneracy core is one of the approaches used for the
characterisation of very large networks [1].

The tremendous expansion of Online Social Networks
(OSN) provides a variety of opportunities for communication,
marketing and other activities among users, companies and
organisations in a global scale. Social media, including Twitter
and Instagram, are used on a daily basis not only for socialis-
ing in the cyberspace but also for getting information, help and
recommendation. At the same time big companies and brands
have a strong presence in social media in order to promote
their products and services. The combination of the two led
to a new form of social media marketing known as influencer

marketing [3]. In OSN influencers are well connected accounts
followed by thousands of other users. Influencer marketing
is considered more effective than traditional marketing since
influencers are more trustworthy than a business because
they develop close connections with their followers. However,
becoming a social media influencer is not easy and it requires
a lot of effort and time. On the other hand, identification
of actual influential users in OSN is also tricky. Simple
centrality measures, such as the number of followers, led to
the emergence of vendors selling OSN fake accounts through
which people can inflate their follower counts and even their
engagement. Thus, brands seeking to expand their financial
circles through OSN influencers may collaborate with fake
influencers. As a result, fake influencers secure sponsorships
but in reality they cannot impact real users.

Fake influencers are present across all major social media
platforms (Instagram, Twitter, Facebook) and the ability to
identify them is critical to the success and credibility of influ-
encer marketing through OSN. So far the proposed methods
have been focusing to the detection fake accounts and little
effort has been devoted to the detection of fake influencers.
The current trend in fake user detection on OSN is to employ
methods that utilise specific account features like date of
account creation, number of posts, number of followers etc,
while a fewer number of approaches, dedicated to Twitter
users, involve some simple centrality measures [4].

In a previous work [5] we used empirical analysis of egocen-
tric networks of social media users to identify fake Influencers
in Twitter. For this purpose we evaluated several centrality
and network characterisation measures and we showed that
both of them differ significantly between legitimate and fake
influencers. In any case, the use of full egocentric networks for
fake influencer detection was an innovation per se. However,
in practice the egocentric networks of both fake and legitimate
influencers are usually very large and computing measures
directly on them is not efficient. In the current study we
show that central community of egocentric networks identified
through the use of a genetic algorithm provides both effective
and efficient means for fake influencers identification.

Genetic Algorithms (GA) are adaptive optimisation meth-
ods that resemble the evolution mechanisms of biological
species [6]. They do not require the continuity of parameter
space and they are able to efficiently search over a wide range



of parameters / parameter sets. In a GA, the search begins from
a population of possible solutions (in our case binary strings of
length equal to the number of users N , with ones denoting the
users that form a cluster), and not just one possible solution.

The initial population is randomly acquired; this means
that the first and major degree of diversity is introduced
in this stage of the GA. However, proper initialisation of
the population has been shown to tremendously speed up
convergence and in most cases wins the trade-off battle with
the diversity. The second and lesser degree of diversity is
introduced when the mutation operator acts upon each string
of the population. The whole evolution process stops after
a predefined maximum number of iterations (generations) is
reached.

The idea of using Genetic Algorithms for community de-
tection in social networks is not new. It was used, basically
in identifying overlapping communities or in a hierarchical
manner for graph clustering in general. Here we adopt it
for central community identification of follower-based social
networks such as Twitter and Instagram.

II. BACKGROUND AND RELATED WORK

While a lot of research has been reported on graph clustering
(for a comprehensive review see the articles of Fortunato [7]
and Malliaros & Vazirgiannis [8] for directed graphs, as well
as the two recent reviews by Javed et al. [9] and Fortunato
& Hric [10]) not much research work has been conducted for
the detection of central communities of graphs and especially
of graphs corresponding to egocentric networks. This trend
can be attributed to three reasons: (1) the detection of central
community of a graph is considered a special case of graph
clustering, (2) the central community of a graph is assumed to
be well approximated by its degeneracy core and the influential
algorithm of Batagelj & Zaveršnik [11] for k-core detection
was implemented in the majority of network analysis software
including Python’s networkx library, and (3) the usefulness of
central community as an approximation of larger networks was
not sufficiently pointed up.

The current work shows the importance of central com-
munity of graphs corresponding to egocentric networks for
the classification of Twiitter accounts into fake and legitimate
influencers. While our method for the central community iden-
tification is based on evolutionary optimisation the degeneracy
core as well as k-cores corresponding to k lower than the
degeneracy are used for the initialisation of the population
of solutions. Both the identified central community as well
as the degeneracy core give us a better approximation of the
real influence of the Twitter account owners than the whole
egocentric network.

Shin et al. [12] in their recent work investigated how the
k-core structures of real-world graphs look like and which
are their common patterns and anomalies. They also discuss
possible exploitation of k-cores for real world applications.
Their major findings are: (1) Coreness, that is the maximum
k such that a vertex belongs to a k-core, is strongly correlated
with node degree, (2) the degeneracy obeys a 3-to-1 power-law

with respect to the count of triangles, (3) while the degeneracy
cores are not cliques they do have non-trivial structures such
as coreperiphery and communities. According to the authors,
deviation from coreness spots anomalies in real-world graphs
while the number of triangles in the graph provides a rough
estimation of the degeneracy. In the current work we used
the latter both as a measure to differentiate between fake and
legitimate influencers as well as a lower bound for k for the
k-cores that initialise our population of solutions.

In the following we present a short literature review re-
garding the use of Genetic Algorithms for graph clustering
since the proposed central community detection approach falls
within this research area. Application of natural computation
inspired methods, including GAs, in community detection was
recently reviewed by Zhang et al. [13] and the interested reader
is referred there for a thorough survey. It is also important to
refer to the influential algorithm of Batagelj and Zaveršnik [11]
for k-core identification as this algorithm, and especially the
implementation in the Python’s networkx library, is used for
population initialisation in our GA method.

In graph clustering, GAs were employed to optimise the
network modularity in order to detect overlapping or even
hidden communities [14]. The fact that GAs do not require
the number of communities (partitions) beforehand, along with
their ability to create overlapping clusters are the two most
important properties that led to the widespread use of GAs
for community detection in social networks.

Bui and Moon [15] were among the first researchers that
applied GAs for graph partitioning. In order to improve the
time to converge they used a schema preprocessing heuristic
while they applied their algorithm on a variety of graph
types, mainly synthetic ones, reporting comparable results
with the simulated annealing method and the Kernighan -
Lin [16] graph bisection algorithm in terms of efficiency.
While the method by Bui and Moon is no more a state of the
art one, the principles they set in their approach influenced
many researchers that applied, in later years, GAs for graph
partitioning.

To a great extent the variability of methods that apply GAs
for graph partitioning is introduced through the optimisation
criteria adopted. Pizzuti’s [17] GA-NET employs the concept
of community score to show the quality of partitioning social
network graphs. The community score is the maximisation of
internal links in a community structure. The efficiency of that
method is enhanced through the modification of the variation
operators to take into account only the actual correlations
among the nodes. In this way, the research space of possi-
ble solutions is considerably reduced. As in most cases the
experiments were conducted mostly on synthetic graphs.

Shang et al. [18] proposed a community detection method
based on a genetic algorithm which takes the network’s
modularity Q as the objective function while prior information
such as the number of community structures is also used.
The optimisation method used is simulated annealing and,
according to the authors, the ability of local search is improved
by adjusting the parameters of the algorithm appropriately. The



method was, mainly, tested on computer-generated data while
no benchmarking with other methods is reported. The fact
that the number of clusters is required as a parameter for the
optimisation function is also another drawback of that method.

Gurrero et al. [19] proposed a generational genetic algo-
rithm, named GGA+, that includes also population initial-
isation while the space of solutions is searched under the
guidance of network modularity as in Shang et al. [18].
Adaptive analysis of the characteristics of a network from
different levels of detail according to analysts’ needs is also
supported.

Bilal and Abdelouahab [20] applied an evolutionary algo-
rithm to repeatedly find the first community structure that
maximises modularity. After that they merge the identified
communities to find the final community structure that has the
highest value of modularity. Identifying the first community
structure that maximises modularity can be used for central
community detection but there is no evidence that this com-
munity has the characteristics of the degeneracy core.

Gong et al. [21] initially proposed a genetic algorithm
named as Meme-Net in which the optimisation criterion was
the modularity density. In their algorithm, a local search
climbing strategy was adopted to improve the performance
of traditional GAs. In a later work they [22] used a multi-
objective optimisation criterion which maximises the density
of internal degrees within a cluster and minimises the den-
sity of external degrees outside the cluster, simultaneously.
According to the authors, the algorithm produces a set of
solutions which can represent various divisions of the network
at different hierarchical levels. The number of communities is
determined by the non-dominated individuals resulting from
the algorithm. Experiments were contacted on both synthetic
and real-world network datasets, the latter being, however,
quite small.

Multi-objective criteria were also adopted by Liu et al. [23]
for the detection of communities in signed social networks.
Their approach is based on the signed similarity which takes
into account the contradiction between positive and negative
links. In order to account for the direct and indirect form of
communities in real-world networks, a combined representa-
tion was adopted allowing the algorithm to switch between the
two different representations during the evolutionary process.
Owing to this representation overlapping communities can
be identified. While the authors used both real-world and
synthetic networks the large networks correspond to synthetic
data.

Rahimi et al. [24] used also a multi-objective approach with
the aid of particle swarm optimisation (MOPSO-Net). Kernel
k-means and ratio cut were the two objective criteria that
were minimised. The contribution of that work was actually
the modification of particle swarm optimisation algorithm
by changing the moving strategy of particles. Experiments
were conducted on synthetic and real-world networks of low
to medium scale. Thus, the conclusions drawn cannot be
generalised to contemporary OSN.

As already explained our method emphasises on the identifi-

cation of the central community of real-world large ecocentric
networks mined from the Twitter. Thus, it cannot directly
compared with anyone of the previously mentioned methods.
We consider the central community as a compact network
representation and we show that through this representation
the actual influence value of the ego node to be assessed.
Regarding the technicalities of the proposed GA algorithm
both the objective function adopted as well as the initialisation
of the population have never presented before. Finally, our
experimentation is purely applied on real-world networks of
large size while the corresponding Python code is provided in
the Appendix.

III. METHODOLOGY

We follow the typical notation of network representation as
a graph G, i.e., G := (V, E) with V being the set of vertices
(nodes) and E being the set of edges (ties between vertices).

A. Central community identification using genetic algorithms

In order to apply a genetic algorithm optimization for cluster
creation we consider a set of binary vectors B = {~bi|i =
1, . . . , PN}, with ~bi ∈ {0, 1}N . Each vector ~bi represents
an initial cluster formation, i.e., the subgraph nodes. Thus,
the length N , of vector ~bi is equal to the total number of
nodes in the graph while the positions of the ones in vector
~bi indicate that the corresponding nodes belong to the cluster
(say subgraph Ci). According to this formulation PN is the
number of initial solutions (clusters).

In order to speed-up the rate of convergence (see a direct
comparison in Figures 1 and 2) population initialisation was
adopted. Binary vectors corresponding to k-cores, for various
values of k, computed using the algorithm of Batagelj and
Zaveršnik [11], were used along with random binary vectors
of size N to create the initial population. The lowest value
of k was taken as the estimated degeneracy, according to the
findings of Shin et al. [12] (see also eq. 6).

Once the initial population has been created the process of
creating new generations starts and consists, typically, of three
stages:

1) A fitness value (measure of “optimality”) of each string
(subgraph Ci) in the population is calculated.

2) Genetic operators, corresponding to mathematical mod-
els of simple laws of nature are applied to the population
and result in the creation of a new population.

3) The new population replaces the old one.
There are three types of operations in differential evolu-

tion processing: mutation, crossover and selection. Mutation
maintains population diversity and improves the ability of
global exploration, crossover accelerates convergence speed
and improves the ability of local exploration while selection
has historical memory and can preserve excellent individuals.

In our case optimisation aims to identify the cluster Copt
(encoded through the binary string ~bopt) that corresponds to
the central community of the graph G assuming that: (i) the
central community has the properties of the degeneracy core,
(ii) the strict definition of a k-core is relaxed so as to allow



Fig. 1. Convergence rate of GA with initalization

Fig. 2. Convergence rate of GA without initalization

nodes of degree lower but close to k to be included. For this
purpose we define an appropriate fitness function (objective
criterion) as follows:

F (~bi) = F (Ci) =
1

a(NCi
)

∑
v∈VCi

d[v]

NCi

(1)

where Ci := (VCi
, ECi

) is a subgraph of G, NCi
is the

number of nodes of Ci, d[v] is the degree of node v and a(NCi
)

is a correcting factor used to account for the fact that the
average degree of a graph depends on the number of its nodes.
In the current work a(NCi

) was taken as:

a(NCi
) =

√
NCi

(2)

The realisation of the genetic operators selection, crossover
and mutation is then taken as follows:

Selection for reproduction. The fitness function F (~bi) is
used in the classical “roulette” wheel reproduction operator
that gives higher probability of reproduction to the strings with
better fitness according to the following procedure:

1) An order number, q, is assigned to the population strings.
That is q ranges from 1 to PN , where PN is the size of
population.

2) The sum of fitness values (Fsum) of all strings in the
population is calculated.

3) The interval [0 Fsum] is divided into PN sub-intervals
each of one being [SFq−1 SFq]
where SFq−1 =

∑q−1
j=1 F (~gi) for q > 1 and SFq−1 = 0

for q = 0 or q = 1,
and SFq =

∑q
j=1 F (~gi) for every q.

4) A random real number R0 lying in the interval [0, Fsum]
is selected.

5) The string having the same order number as the subin-
terval of R0 is selected

6) Steps (iv) and (v) are repeated PN times in order to
produce the intermediate population to which the other
genetic operators will be applied.

Crossover. Given two strings ~bi and ~bj (parents) of length
N an integer number r is randomly selected. The two strings
retain their gene values up to gene r and interchange the values
of the remaining genes creating two new strings (offsprings).

Mutation. This operator is applied to each gene of a string
and it alters its content, with a small probability. The mutation
operator is actually a random number that is selected and
depending on whether it exceeds a predefined limit it changes
the value of a gene.

B. Evaluation Metrics for the detection of fake influencers

Once the central community of a graph, corresponding
either to a fake or to a legitimate Twitter influencer, the
following evaluation metrics are computed. We avoided using
measures that have been already discussed in our previous
works [5] because the majority of them full egocentric network
to be known.

1) Ego’s in degree: The in degree of the ego in celebrity
and fake influencer networks is usually large compared to the
out degree of the ego or the number of vertices in the network.
We include this measure here, denoted as ď[ve], in order to
verify the previous assumption. By ve we denote the ego.

2) Average degree: The average degree, given by eq. 4, is
a measure for global network characterisation. Typically fake
users have low in degree and as a result one expects that fake
influencer egocentric networks will have a rather low average
degree.

d̄ =

∑
v∈V d[v]

N
(3)

where V is the set of network vertices, d[v] indicates the degree
of vertex v, and N is the number of nodes of graph G.

The average degree of the central community, denoted as
d̄C , is computed in a similar manner:

d̄C =

∑
v∈VC d[v]

NC
(4)



3) Relative average degree of central community: With the
aid of average degree of the central community we define a
similar normalised measure that accounts for the length of the
full network in terms of the number of nodes. The relative
average degree of central community is given by eq. 5 below.

rd̄ =
log2d̄C
log2N

(5)

4) Estimated degeneracy: According to the work of Shin
et al. [12] the degeneracy, say kmax, of a real-world network
can be estimated by the total number TN of triangles in the
graph via a power law. It appears that in egocentric networks
this estimation is not so accurate, however, the highest the
deviation is the more likely the ego is a real influencer.

In the current work we estimate the degeneracy with the aid
of formula 6. This estimation provides a lower bound for the
actual degeneracy number for legitimate influencers and other
typical egocentric network but this is not the case for fake
influencers. Nevertheless, the estimated degeneracy is used
for the initialisation of the pool of solutions for the genetic
algorithm as already explained in Section III-A.

k̂max = 3 · log2TN (6)

Two additional estimations of the degeneracy are also
proposed in the current work (see also the discussion in
Section V). They are based on the average degree of the whole
network, d̄, and the central community, d̄C :

k̂Fmax = 1.15 · d̄ (7)

k̂Cmax = 0.71 · d̄C (8)

5) Relative degeneracy estimators difference: As discussed
in Section III-A the relative difference, shown in eq. 9, among
the degeneracy estimators of eq. 8 and 7 varies significantly
among the fake and legitimate influencer groups.

rk =
|k̂Cmax − k̂Fmax|

k̂Cmax

(9)

IV. DATASET AND DATA COLLECTION

The dataset of our experiments consists of egocentric net-
works directly mined from the Twitter with the aid of Twitter
API1. We started first by identifying Twitter accounts that
correspond to fake influencers by following the approach of
Zenonos et al. [5]: A Twitter account (@andreast88) was
registered and 1000 fake followers were bought from three
different vendors. Candidate fake influencers were identified
by checking other Twitter accounts that the fake followers of
@andreast88 also follow. Note that due to the recent measures
taken by Twitter regarding fake accounts most of @andreast88
eventually disappeared. However, we had already identified
thousands of candidate fake influencers among which 45 were
manually selected and crawled during the period March 2018

1https://developer.twitter.com/en/docs.html

- October 2018. As in [5] we adopted the following working
definition for fake influencer: “Fake influencer in Twitter is
an account whose a great proportion (higher than 50%) of
followers are fake”.

Legitimate influencers were selected among politicians,
journalists, TV personas, football players and marketing spe-
cialists from a variety of countries including Cyprus, Turkey,
Italy, UK and USA. For the purpose of the current experiment
we focused on accounts whose number of followers match
that of fake influencers so as to have a fair comparison (see
Table I). We should mention here that a Twitter egocentric
network consists of the ego (the Twitter account under inves-
tigation), its alters (her/his friends and followers) and all ego-
alter and alter-alter ties. Thus, mining the egocentric network
corresponding to a Twitter account is a time consuming
procedure. This is the reason we believe that even the dataset
its own is an important contribution to the research dealing
with graph partitioning of real-world social networks. Thus,
the final dataset we used in our experiments, consisting of
20 Twitter egocentric networks corresponding to 11 legitimate
and 9 fake influencers, was transformed into Pajek2 format and
is publicly available through our website at https://irci.eu/.

V. RESULTS AND DISCUSSION

The values of all measures described in Section III-B, along
with some basic characteristics of the full graphs correspond-
ing to all 20 egocentric networks that were investigated, are
presented in Table I. A two independent means two tail t-
test was conducted, on all measures presented in Table I, to
identify statistical significance and the corresponding p-values
among the two groups, i.e., legitimate and fake influencers. We
observe, first, that there is no significant difference on the size
of the compared networks, thus, the comparison on the rest of
the measures is fair. It also appears that there is no significant
difference on the number of ego’s followers. In both legitimate
and fake influencers their followers consist the great majority
of network’s nodes.

All the measures computed from the full graph present
statistical significance among fake and legitimate influencer
groups. However, we especially note the huge deviation be-
tween the actual degeneracy, kmax, and the estimated one,
k̄max, in the case of the legitimate influencers. Also, we ob-
serve that the degeneracy is, in all but one cases, overestimated
in the fake influencers while the situation is reversed in the
legitimate influencers. Thus, the ratio kmax/k̄max is good
indication of the influencing potential of a Twitter account.
The problem, however, is the time complexity that is required
for the estimation of degeneracy and especially for the compu-
tation of the number of triangles TN (see also eq. 6) in a large
network. On the other hand, we observe a strong correlation,
i.e., ρ(d̄, kmax) = 0.946, between the degeneracy and average
degree in the legitimate influencers. This means that a rough
estimation, kmax ≈ 1.15 · d̄, of the degeneracy can be obtained
from the average degree which is a very simple to compute

2http://mrvar.fdv.uni-lj.si/pajek/



TABLE I
EVALUATION METRICS

Full Graph Central Community Combined

Graph N ď[ve] kmax k̂max d̄ kmax/k̂max k̂Fmax IR(x103) NC d̄C k̂Cmax ICR (x103) rd̄ rk k̂max/d̄C

F01 644 409 47 50 21.08 0.94 25 4.3 59 65.66 46 1.9 0.6470 0.4894 0.7615
F02 924 863 45 51 17.25 0.88 21 7.4 59 60.31 42 1.8 0.6003 0.5349 0.8456
F03 1066 1032 31 54 29.84 0.57 36 15.4 125 50.94 36 3.2 0.5638 0.0556 1.0601
F04 2409 2002 44 50 7.95 0.88 10 8.0 57 62.84 44 1.8 0.5317 0.8000 0.7957
F05 3058 2934 24 43 3.96 0.56 5 5.9 27 33.78 24 0.5 0.4386 0.7917 1.2729
F06 4177 3992 52 50 4.30 1.04 5 8.6 A61 70.52 49 ‘2.2 0.5105 0.9000 0.7090
F07 4696 3358 39 53 11.40 0.74 14 19.1 331 56.41 39 9.3 0.4770 0.6750 0.9395
F08 4857 4748 21 41 2.58 0.51 3 6.1 29 27.45 19 0.4 0.3902 0.8421 1.4936
F09 4862 4682 25 41 2.65 0.61 3 6.2 27 34.07 24 0.5 0.4156 0.8750 1.2034

L01 585 520 63 56 55.71 1.13 67 14.5 79 88.73 62 3.5 0.7040 -0.0635 0.6311
L02 975 823 147 66 125.12 2.23 150 51.5 187 212.47 149 19.9 0.7786 0.0066 0.3106
L03 1059 1038 145 66 125.68 2.20 151 65.2 256 225.83 158 28.9 0.7781 0.0563 0.2923
L04 1310 1112 192 71 217.33 2.70 261 120.8 416 310.20 217 64.5 0.7993 -0.1864 0.2289
L05 1660 1367 146 68 133.42 2.15 160 91.2 193 201.17 141 19.4 0.7154 -0.1189 0.3380
L06 1919 1873 326 71 308.27 4.59 370 288.7 507 434.04 304 110.0 0.8034 -0.2013 0.1636
L07 2035 1759 255 73 212.77 3.49 255 187.1 291 343.00 240 49.9 0.7663 -0.0451 0.2128
L08 2177 1928 190 73 162.74 2.60 195 156.9 365 302.86 212 55.3 0.7434 0.0930 0.2410
L09 2226 1981 326 77 299.74 4.23 360 296.9 379 444.02 311 84.1 0.7909 -0.1429 0.1734
L10 3942 3807 300 77 222.64 3.90 267 423.8 378 412.14 288 77.9 0.7273 0.0887 0.1868
L11 4096 4052 332 78 245.84 4.26 295 498.1 386 440.82 309 85.1 0.7320 0.0575 0.1769

p-value .1554 .2043 .00001 <.00001 <.00001 <.00001 n/a .0021 .0003 <.00001 n/a .0002 <.00001 <.00001 <.00001
signif. No No **** **** **** **** ** *** **** *** **** **** ****

measure. At the same time, as expected, the degeneracy is
strongly correlated, i.e., ρ(d̄C , kmax) = 0.9949, with the
average degree, d̄C , of the central community for every graph
and can be approximated as kmax ≈ 0.71 · d̄C . Thus, the
deviation between those two estimations of the degeneracy
can be used for the identification of fake influencers as it can
be easily seen in the rk column of Table I.

The average degree of the central community d̄C is also
a reliable metric for differentiating fake and legitimate influ-
encers. We observe that, despite the differences in the number
of nodes of the corresponding full graphs, even the largest
average degree of central communities of the fake influencer
graphs is well below the smallest average degree of central
communities of the legitimate influencers. This observation is
further verified by observing the values of the relative average
degree rd̄ in Table I. Regarding the latter it is interesting to
note the stability of that measure in the legitimate influencers
group.

A. Influence range

Our major claim in the current work is that through the
central community of a Twiiter egocentric network we can
reliably measure the actual influence of the ego. As already
explained simple centrality measures do not work well for the
estimation of the influence of a Twitter account due to the
presence of fake or inactive followers. Thus, any measure of
influence should consider not only the ego’s followers but the
followers of the followers as well. A rough estimation of this
number is obtained by multiplying ego’s number of followers,
denoted ď[ve] herein, with the half of the average degree d̄ as
in eq. 10.

IR = 0.5 · ď[ve] · d̄ (10)

We argue that a more accurate estimation of the influence
range can be obtained through the central community of the
graph according to eq. 11. The correlation, ρ(IR, I

C
R ), in the

legitimate influencer and fake influencer groups, ρ = 0.8139
and ρ = 0.8820 respectively, supports our claim.

ICR = 0.5 ·NC · d̄C (11)

VI. CONCLUSION & FURTHER WORK

In this paper we ave experimentally shown that the central
community of egocentric Twitter networks can provide reliable
measures regarding ego’s influential value. Some innovative
measures, based on estimations of the degeneracy, were
proposed for effective identification of fake influencers. In
addition, a new metric called influence range was proposed to
represent the actual influential value of the ego based on char-
acteristics of the central community. The central community
is identified through a genetic algorithm which is described in
detail in the current paper. Both the fitness function used as
well as the initialisation of the population are introduced here
for the first time.

A side, but not negligible, outcome of this study is the
creation of a new dataset of egocentric networks of fake and
legitimate influencer Twitter accounts. This dataset is publicly
available to the research community through our website.

Our near future plans are focusing on the use of triadic
census characteristics of the ego graphs to identify differences
between fake and legitimate influencers. Our emphasis will



be given to triads encoded as 201 in the MAN (Mutual
Asymmetric Null) labelling scheme. Triads of this kind reflect
ego’s brokerage value and we anticipate that will have impact
on ego’s influential value as well.
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APPENDIX

Here we provide the full Python code that allows anyone who
wishes to re-run the experiments and test their validity. The graphs
as Pajek (see http://vlado.fmf.uni-lj.si/pub/networks/pajek/) files are
also publicly available through https://irci.eu/.

1) Example of code execution commands:

>>> exec(open(’GA_coreSubgraph.py’).read())
>>> import networkx as nx
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> G = nx.read_pajek(’intial_graphs/F01.net’)
>>> G = nx.DiGraph(G)
>>> G.remove_edges_from(G.selfloop_edges())
>>> [new_pop, min_scores] = GA_optimization(G,

0, np.zeros([250,G.number_of_nodes()]), 5)
>>> [new_pop, min_scores] = GA_optimization(G,

1, new_pop, 0.05)
>>> scores = [SubGraph_ADscore(G,new_pop[i,:])

for i in np.arange(new_pop.shape[0])]
>>> k = np.argmax(scores)
>>> C1 = [G.nodes()[i] for i in

np.arange(G.number_of_nodes()) if
new_pop[k,i]==1]

>>> Q1 = G.subgraph(C1)
>>> C = list(nx.k_core(G, k=192,

core_number=None))
>>> Q = G.subgraph(C)
>>> G.number_of_nodes()
>>> np.average(list(Q.degree().values()))
>>> nx.density(Q)
>>> centralization(G)
>>> nx.write_pajek(Q1,’cores/L04_core412.net’)

2) The python functions used are given below (contents of file
GA coreSubgraph.py)



import networkx as nx
import numpy as np
import bisect

def GA_optimization(G, init, population, T):
N = G.number_of_nodes()
d =

int(np.average(list(G.degree().values())))
number_of_solutions = 2*d
# percentage of subgraph nodes
b = round(0.4/(np.log(N))*N)
pop_dims = (number_of_solutions,N)
# Create the initial population
if init>0:

new_population = int_initialization(G,
population)

else:
init_population = np.random.choice([0, 1],

size=pop_dims, p=[1-b/N, b/N])
new_population = init_population

# find the scores of the population
scores =

[SubGraph_ADscore(G,new_population[i,:])
for i in
np.arange(new_population.shape[0])]

# create the wheel
wheel = np.cumsum(scores)
wheel = wheel/max(wheel)
min_scores=[]
while (max(scores)-min(scores))>T:

[px, py] = mate_pair(wheel)
[x,y] = offsprings(new_population, px, py)
new_population = generation(G,

new_population, x, scores)
new_population = generation(G,

new_population, y, scores)
[scores, wheel] = update(G, new_population)
print(’max_score: ’, max(scores))
print(’min_score: ’, min(scores))
min_scores += [min(scores)]

return new_population, min_scores

def int_initialization(G, new_population):
N = G.number_of_nodes()
d =

int(np.average(list(G.degree().values())))
m = d
C1 = list(nx.k_core(G, k=m,

core_number=None))
lc = len(C1)
k=0
while lc>m:

index_core = [i for i in np.arange(N) if
G.nodes()[i] in C1]

opt_vector = [0+int(i in index_core) for i
in np.arange(N)]

if (m//2==m/2):
new_population[k,:]=opt_vector

else:
new_population[k,:]=mutation(opt_vector)

m+=1
k+=1
print(k, m)
C1 = list(nx.k_core(G, k=m,

core_number=None))
lc = len(C1)

new_population = new_population[:m-d+10,:]
return new_population

def SubGraph_ADscore(G,b_vector):
Nc = sum(b_vector)
N = len(b_vector)
subset = [G.nodes()[i] for i in np.arange(N)

if b_vector[i]>0]
C=G.subgraph(subset)
return np.average(list(C.degree().values()))

/ np.sqrt(Nc)

def mate_pair(wheel):
# select the parents

x = np.random.uniform(low=0,
high=1,size=(1,1))[0][0]

y = np.random.uniform(low=0,
high=1,size=(1,1))[0][0]

px = bisect.bisect(wheel, x)
py = bisect.bisect(wheel, y)
while px==py:

y = np.random.uniform(low=0,
high=1,size=(1,1))[0][0]

py = bisect.bisect(wheel, y)
return px, py

def best_mate_pair(wheel, scores):
px = np.argmax(scores)
py = np.argmax(scores)
while px==py:

y = np.random.uniform(low=0,
high=1,size=(1,1))[0][0]

py = bisect.bisect(wheel, y)
return px, py

def offsprings(population, px, py):
N = population.shape[1]
crosspoint =

int(round(np.random.uniform(low=0,
high=N-1, size=(1,1))[0][0]))

off1 = list(population[px,:crosspoint]) +
list(population[py,crosspoint:])

off2 = list(population[py,:crosspoint]) +
list(population[px,crosspoint:])

return mutation(off1), mutation(off2)

def mutation(b_vector):
N = len(b_vector)
genes_mutated = N//3000+1
genes = np.random.uniform(low=0, high=N-1,

size=(1,genes_mutated))[0]
genes = [int(round(gene)) for gene in genes]
for gene in genes:

prob = np.random.uniform(low=0, high=1,
size=(1,1))[0][0]

b_vector[gene] =
int(round(abs(b_vector[gene]-prob)))

return b_vector

def generation(G, population, x, scores):
x_score = SubGraph_ADscore(G,x)
min_index = np.argmin(scores)
if x_score>scores[min_index]:

population[min_index,:]=x
scores[min_index]=x_score

return population

def update(G, population):
scor = [SubGraph_ADscore(G,population[i,:])

for i in np.arange(population.shape[0])]
wheel = np.cumsum(scores)
wheel = wheel/max(wheel)
return scor, wheel

def centralization(G):
d_max = max(G.in_degree().values())
g=G.number_of_nodes()
e=G.number_of_edges()
return (g*d_max-e)/(e*(g-1))


