

Cyber-bullying , hate speech, and online social bridges detection

Aristotle University of Thessaloniki

V. Moustaka, D. Chatzakou, A.-M. Founta, A. Gogoglou, E. Papagiannopoulou, T. Terzidou, A. Vakali

Abstract

Online social networks (OSNs) constitute a breeding ground for the spread of several risks and threats to privacy and security affecting life quality regarding information security and civic participation in data production [1].

Aiming at protection of minors from malicious actors in OSNs, a browser-based architecture* was designed and deployed, leveraging the latest advances in usable security and privacy.

Some of the methodologies that were used to develop the add-on, which aims to identify users' profiles for detection and prediction of malicious online behavior, are presented herein.

Building a malicious behavior detection browser add-on

Data Colle

aiming at predicting hate speech in OSNs [2]

use into other platforms

- A novel framework has been developed to detect bully and aggressive users various attributes, i.e., user, text, and network based
- The proposed methodology evaluated by a corpus of 1.6M tweets, showed that machine learning classification algorithms can efficiently detect users exhibiting bullying and aggressive behavior, with over 90% AUC [1]

Fig 3. Architecture for a high-accuracy hate speech classifier

- 40,000 suspended accounts from Twitter were used as seeds to collect their neighboring sub-graphs from a complete graph of 50 million users
- The connected components of the formulated sub-graphs were calculated using the Tarjan algorithm and their connectivity was measured using k-core decomposition
- Green component: strongly connected core, red: peripheral nodes, black: disconnected nodes (malicious)
- The largest connected group of the red component constitutes Fig. 4. Twitter graphs and social bridges the "social bridges" - linking malicious to honest users [4]

0.75

0.75 1.00

0.50 1.00 0.51

1.00

1.00

1.00

1.00

Fig. 2: Pipeline of abusive detection process

This classifier was tested in multiple Twitter datasets with

high performance and one gaming dataset in a plug and play fashion, showing the potential to easily generalize its

inappropriate speech was proposed on a 100k labeled

Twitter dataset shared openly with communities [3]

nd Truth Building

- Table 1. Precision and recall scores on The Perverted Justice dataset was exploited, with the purpose of identifying predator behavior in chat conversations
 - The predators' and the victims' posts were analyzed separately
 - Both textual information and affect/sentiment scores were exploited with the purpose of training and evaluating an One-Class SVM model which was used to distinguish between predators and victims/friendly conversations

References

predators and victims

OC-SVM nan

d-0.5-0.001 1.00

0.0 5-0.001

[1] V., Moustaka, Z., Theodosiou, A., Vakali, A., Kounoudes, L.-G., Anthopoulos, (2019): Enhancing Social Networking in Smart Cities: Privacy and Security Borderlines. Technological Forecasting & Social Change 142, 285-300.

[2] D. Chatzakou, N., Kourtellis, J., Blackburn, E., De Cristofaro, G., Stringhini, A., Vakali. (2017). Mean birds: Detecting aggression and bullying on twitter. In Proceedings of the 2017 ACM on web science conference, Troy, NY (USA).

[3] A.-M., Founta, D., Chatzakou, N., Kourtellis, J., Blackburn, A., Vakali, I., Leontiadis. (2019). A Unified Deep Learning Architecture for Abuse Detection, Accepted in ACM Conference on Web Science (WebSci '19), Boston, USA, [4] A.-M., Founta, C., Djouvas, D., Chatzakou, I., Leontiadis, J., Blackburn, G., Stringhini, A., Vakali, M., Sirivianos, N., Kourtellis. (2018). Large Scale Crowdsourcing and Characterization of Twitter Abusive Behavior. In Proceedings of the ICWSM '18, Stanford, California.

[5] A., Gogoglou, Z., Theodosiou, T., Kounoudes, A., Vakali, Y., Manolopoulos. (2016). Early malicious activity discovery in microblogs by social bridges detection. In 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Limassol, Cyprus.

Acknowledgments

This work was funded by the European Union's Horizon 2020 research and innovation program ENCASE under the Marie Skodowska-Curie grant agreement No 691025

Contact

Name: Athena Vakali

Email: avakali@csd.auth.gr Organization: Department of Informatics (AUTH) Website: https://datalab.csd.auth.gr/