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BUILDING A MALICIOUS BEHAVIOR DETECTION BROWSER ADD-ON
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Flg 1.The ENCASE architecture



CYBER-BULLYING & HATE SPEECH DETECTION
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Fig. 3. Architecture for a high-accuracy hate speech classifier



ONLINE SOCIAL BRIDGES DETECTION

= 40,000 suspended accounts from Twitter were used as seeds to
collect their neighboring sub-graphs from a complete graph of
50 million users

" The connected components of the formulated sub-graphs were
calculated using the Tarjan algorithm and their connectivity was
measured using k-core decomposition

= Green component: strongly connected core, red: peripheral
nodes, black: disconnected nodes (malicious)

" The largest connected group of the red component constitutes

the “social bridges” - linking malicious to honest users Fig. 4. Twitter graph and social bridges



TOWARDS IDENTIFYING PREDATOR BEHAVIOR IN CHAT

CONVERSATIONS

= Perverted Justice dataset: contains dialogues between
predators and victims

= Analysis of predators’ and the victims’ posts
. Table 1. Precision and recall scores on predators and victims
— 2 different datasets were created

— For each dataset, the posts per seduction case Text eature set OC-SVMparams  precisionon Recallon ~ Precision ~ Recall on
’ Representation cature se (kernel-nu-gamma) Predators Predators on Victims Victims
were grouped and each case’s posts were
concatenated, following ascending order based on

. . . . GloVe vector+affects+#posts sigmoid-0.5-0.001  1.00 0.75 1.00 1.00
the date / time information field
L ) ) affects+#posts sigmoid-0.5-0.001  1.00 0.75 1.00 1.00
= Exploitation of both textual information and
affect/sentiment scores THIdf vector+affects+#posts  poly-0.5-0.001  1.00 0.50 1.00 051

— One-Class SVM model training and evaluation

= Distinction between predators and victims /
friendly conversations
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