
PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the ENCASE Consortium. Neither this document nor the
information contained herein shall be used, duplicated or communicated by any means to any third party, in whole or in
parts, except with prior written consent of the ENCASE consortium.

ENhancing seCurity and privAcy in the Social wEb: a user-centered

approach for the protection of minors

WP6 - Sensitive content detection and protection

Deliverable D6.3: “Implementation of browser add-on for content detection and

protection”

Marie Sklodowska Curie,

Research and Innovation Staff

Exchange (RISE)

Editor(s): Evangelos Kotsifakos, Orfeas Theofanis (LST)

Author(s): Antonis Papasavva, Petros Papagiannis, Aimilios Yiallouros (CUT), Rig Das,
Himanka Kalita, Gabriel Emile Hine, Emanuella Piciucco (ROMA3), Nikolas
Kourtellis (TID), Loizos Koukoumas, Christos Mourouzis, Rafael Costantinou,
Dimitris Antoniades (CYRIC), Andreas Pafitis (SGX), Orfeas Theofanis,
Dimitrianos Savva, Evangelos Kotsifakos (LST)
 (CYR), Aimilios Yiallouros (CUT)

Dissemination Level: Public

Nature: Demonstrator

Version: 0.4

Ref. Ares(2018)6678967 - 31/12/2018

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

2

 ENCASE Project Profile

Contract Number 691025

Acronym ENCASE

Title ENhancing seCurity and privacy in the Social wEb: a user-centered

approach for the protection of minors

Start Date Jan 1st, 2016

Duration 48 Months

Partners

Cyprus University of

Technology
Cyprus

University College London United Kingdom

Aristotle University Greece

Università degli Studi

Roma Tre
Italy

Telefonica Investigacion Y

Desarrollo SA
Spain

SignalGenerix Ltd Cyprus

Cyprus Research and

Innovation Center, Ltd
Cyprus

L S Tech Spain

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

3

Document History

AUTHORS

(CUT) Antonis Papasavva, Petros Papagiannis, Aimilios Yiallouros

(ROMA3) Rig Das, Himanka Kalita, Gabriel Emile Hine, Emanuella Piciucco

(TID) Nikolas Kourtellis

(CYRIC) Loizos Koukoumas, Christos Mourouzis, Rafael Costantinou, Dimitris Antoniades

(SGX) Andreas Pafitis

(LST) Orfeas Theofanis, Dimitrianos Savva, Evangelos Kotsifakos

VERSIONS

Version Date Author Remarks

0.1 06.12.2018 LST Initial partial draft

0.2 11.12.2018 All Authors Input from authors - Integrated

draft

0.3 20.12.2018 CUT Revision

0.4 28.12.2018 CUT&LST Final Version

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

4

Executive Summary

Following the work done in Tasks T6.2 and T6.3 that has been described in D6.2, D6.3 is the

outcome of the task T6.4 – “Design and implementation of browser add-on that informs users

about sensitive content and enables them to protect it”. The objective of this task is the

development of the browser add-on that detects sensitive content) and enables the user to

protect in a user-friendly way. The functionalities of the add-on will be: a) identify user images or

messages or newsfeed posts that may be inappropriate for uploading to an OSN without the

proper access restrictions; b) warn the user or his parents about the risks of uploading that

sensitive content; c) provide usable controls that enables users or their parents to protect such

content either by simply defining restrictive OSN privacy settings, or by using steganography and

encryption.

The main point of this deliverable is to demonstrate how the browser add-on implementation

works and present the background processing. Links to the videos that demonstrate each

component are available in this deliverable.

It is shown that the developed technologies have the desired results on the areas of watermarking

and steganography, nudity detection and Attribute-based encryption. Technical details of the

various modules are described.

Following a seamless integration the modules described in this deliverable are running on the

ENCASE proxy and their results are presented to the user through notifications in the browser

add-on.

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

5

Table of Contents

Executive Summary .. 4

List of Figures .. 6

1. Introduction .. 7

2. Watermarking and Steganography ... 7

 Tools and Libraries .. 7 2.1.

 API Implementation .. 8 2.2.

 Unhide Encrypted Data from a Steganoimage ... 11 2.3.

 Hide Cropped Encrypted Data from an Image in that same Image 13 2.4.

 Unhide Cropped Encrypted Data from a Steganoimage .. 16 2.5.

 Blurring ... 18 2.6.

 Watermarking ... 20 2.7.

3. Skin and face detection... 22

 System Architecture Flow ... 22 3.1.

 Implementation Stack ... 23 3.2.

 Demonstration and Use Instructions .. 24 3.3.

4. Nudity detection ... 29

 How to use the API ... 30 4.1.

5. Sensitive Content Detection ... 33

 Deployment .. 33 5.1.

 Demonstration Description .. 35 5.2.

6. Attribute-based encryption .. 35

 Introduction .. 35 6.1.

 Tools and Libraries .. 36 6.2.

 API Implementation – Demonstration and Use Instructions .. 36 6.3.

7. Conclusion ... 39

8. Copyright and Intellectual Property ... 39

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

6

List of Figures

Figure 1 – Original image/RGB/HSV/YCbCr and the end average result .. 23

Figure 2 –Architecture of the proposed in-browser content analysis filter 24

Figure 3 Navigate through different specs ... 24

Figure 4 “WP6 - T6.1 – LK” Full Website View .. 25

Figure 5 Services of Face Detection .. 26

Figure 6 Upload Image to be tested ... 27

Figure 7 The call to the service ... 27

Figure 8 Result Returned .. 27

Figure 9 The body of Face Recognition service takes as input an address 28

Figure 10 Example of what the GET request should return ... 29

Figure 11 The result of face recognition ... 29

Figure 12 Encrypted Image With Access Policy .. 37

Figure 13 - Decryption API with User's Private Key .. 38

Figure 14 Decryption Response .. 39

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

7

1. Introduction

Following the research carried out in the previous tasks, this deliverable presents the developed

systems that support the detection of sensitive content in OSNs and the way each related module

works. The modules are integrated in the ENCASE proxy and are communicating their outputs to

the end user through notifications in the browser add-on.

The following implementations are discussed: steganography and digital watermarking, skin and

face detection, nudity detection and attribute-based encryption. More on the principles behind

the implementation and the related research can be found in the deliverables D6.1 and D6.2.

Demonstrations are available and links to the respective videos are included in the document.

2. Watermarking and Steganography

This chapter reports the Steganography and Digital Watermarking API implementation based on

the requirements of ENCASE. The following API calls were developed:

 Encrypted Steganography in an unsuspected image - Hide encrypted data (image or text) in a static,
unsuspected carrier image (lock)

 Decrypted De-steganography from a Steganoimage - Unhide encrypted data (image or text) from a
carrier image

 Cropped Encrypted Steganography - Crop and blur sensitive content from an image and encrypt and
hide the cropped data in that same image

 Cropped Decrypted De-Steganography - Decrypt and replace the blurred sensitive content of an
image with the cropped data

 Blur - Blur sensitive content in an image

 Watermaking - Place a watermark of ENCASE logo in an image

The service is up and running on the ENCASE Proxy VM. It can be tested via its Swagger

Documentation at http://35.205.100.70:18080/ or by an API development framework (e.g.

POSTMAN) by calling the relative APIs. Also, a detailed documentation of the implementation and

how to install it and run it locally or on the ENCASE Proxy VM can be found in the Phabricator Task

Manifest at http://encase.phabricator.cut.ac.cy/T26.

In the following sections the implemented API calls are briefly described with step by step

screenshots.

 Tools and Libraries 2.1.

The APIs were developed using:

 Python 3 - Programming Language

 Stegano - Steganography Library

 Cryptosteganography - Cryptosteganography Library

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

8

 PyCryptoDome - Python Library for Cryptography

 PIL - Python Imaging Library

 Flask - Microframework for web development

 API Implementation 2.2.
This section reports in brief each API call implementation and provides a step by step screenshot

description. The screenshots were taken by calling the APIs through Swagger Documentation of

this service which can be found at http://35.205.100.70:18080/ (WP6 – T6.2- CM).

2.2.1. Encrypted Steganography in an Unsuspected Image

This API call is responsible for hiding encrypted sensitive content in a static, unsuspected image

(lock) using LSB Image steganography. It receives as inputs, the content to be hidden (image or

text) and the symmetric key to encrypt it and outputs the Steganoimage or an error.

In the case of hiding an image, firstly the algorithm resizes -the bigger dimension to the half of the

carrier image and also keeping the aspect ratio- and converts (compress) it to JPEG format in

order to ensure that it can fit in the carrier image. Then, the sensitive content (either image or

text) is converted in bytes and is encrypted with the symmetric key for extra security before it is

finally hidden in the carrier image.

2.2.2. Parameters

URL http://35.205.100.70:18080/apiSteganographyWatermarking/hideData

Method POST

Header

Key Value

Content-Type multipart/form-data

Body (Inputs)

Key Value Format

image Image to be hidden PNG, JPEG, GIF, BMP

text Text to be hidden text

key Symmetric key for encryption text

Note: It is not possible to hide both an image and text. Only use one input at a time.

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

9

Responses (Outputs)

Status Value Description

200 response.png Steganoimage containing the hidden data

400 {"error": "Cannot use stegonagraphy
without data"}

The API was called with no inputs

400 {"error": "Cannot encrypt data without
key"}

The API was called with no key

400 {"error": "Cannot encrypt data with null
key"}

The key is null

400 {"error": "File not allowed"} Input file is not an image or in a supported
format

400 {"error": "Cannot import both image and
text"}

The API was called with both image and text
as inputs

2.2.3. Demonstration and Examples

2.2.3.1. Hide an Image

2.2.3.2. Hide Text

Insert text to be hidden e.g. a phone

number

Import a symmetric key to encrypt the

sensitive content

Upload the image with the sensitive content

e.g a picture of a child

Import a symmetric key to encrypt the

sensitive content

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

10

2.2.3.3. Response

SteganoImage that contains

the hidden content (text or

image) in it

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

11

 Unhide Encrypted Data from a Steganoimage 2.3.
This API is responsible for decrypting and revealing the hidden content of a Steganoimage. If the

input key is correct and the input image contains hidden content, then the API gives as output the

hidden content (either text or image).

2.3.1. Parameters

URL http://35.205.100.70:18080/apiSteganographyWatermarking/unhideData

Method POST

Header

Key Value

Content-Type multipart/form-data

Body (Inputs)

Key Value Format

image Steganoimage that contains the hidden content PNG

key Symmetric key for decryption text

Responses (Outputs)

Status Value Description

200 response.jpg Revealed Image

200 {"hidden": revealed text} Revealed Text

400 {"error": "Cannot decrypt empty data"} The API was called with no inputs

400 {"error": "Cannot decrypt data without

key"}

The API was called with no key

400 {"error": "Cannot decrypt data with null

key"}

The key is null

400 {"error": "File not allowed"} Input file is not an image or in a supported

format

400 {"error": "Nothing is hidden in this

image"}

The image does not contain any hidden

content

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

12

2.3.2. Demonstration and Examples

2.3.2.1. Unhide an Image

2.3.2.2. Response

Import the symmetric key to decrypt the

sensitive content

Upload the image that carries the hidden image

Hidden

image

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

13

2.3.2.3. Unhide Text

2.3.2.4. Response

 Hide Cropped Encrypted Data from an Image in that same Image 2.4.

This API is responsible for cropping and blurring sensitive content of an image, encrypt it with a symmetric
key and hide it into the same image using LSB Image steganography. It receives as inputs, the image, the
key and the coordinates (pixels) of the sensitive content and outputs the Steganoimage with the sensitive
content being blurred or an error.

It is possible to hide multiple sections of an image. This is done by also storing and hiding the upper-left
coordinates and the size of each section so that the retrieval algorithm can detect where to replace the
blurred section with the original one. The whole content is converted in bytes and is encrypted with the
symmetric key for extra security before it is finally hidden in the image.

Import the symmetric key to decrypt the

sensitive content
Upload the image that carries the hidden text

Hidden text

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

14

The format of the hidden content in bytes is:

hiddenSectionsCounter x1 y1 size1 croppedContent1 x2 y2 size2 croppedContent2 etc

2.4.1. Parameters

URL http://35.205.100.70:18080/apiSteganographyWatermarking/hideCroppedEncryp

tedData

Method POST

Header

Key Value

Content-Type multipart/form-data

Body (Inputs)

Key Value Format

image Image with sensitive data that will carry its cropped, encrypted

content

PNG, JPEG, GIF,

BMP

key Symmetric key for encryption text

coordinates {"coordinates" : [[x1,x2,y1,y2], [x1,x2,y1,y2], etc]} JSON

Responses (Outputs)

Status Value Description

200 response.png Steganoimage containing

the hidden data

400 {"error": "Cannot use steganography without image or

coordinates"}

The API was called with

no inputs

400 {"error": "File not allowed"} Input file is not an image

or in a supported format

400 {"error": "Cannot encrypt data without key"} The API was called with

How many sections

are hidden

Upper -left

coordinate

s (pixels)

Size of

cropped

section

The

cropped

section

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

15

no key

400 {"error": "Cannot encrypt data with null key"} The key is null

400 {"error": "Not valid coordinates json. Please send as

{'coordinates':[[x1,x2,y1,y2],[x1,x2,y1,y2]]} etc"}

The coordinates value is

not a JSON

400 {"error": "Wrong coordinates json format. Please send as

{'coordinates':[[x1,x2,y1,y2],[x1,x2,y1,y2]]} etc"}

The coordinates value is

not in the correct JSON

format

2.4.2. Demonstration and Examples

2.4.2.1. Hide a face

Import the symmetric key to encrypt the

sensitive content

Upload the image that has the sensitive content

Coordinates in pixels of the sensitive section e.g.

detected child’s face section

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

16

2.4.2.2. Response

 Unhide Cropped Encrypted Data from a Steganoimage 2.5.
This API is responsible for revealing the hidden, cropped, encrypted content of an image. If the

input key is correct and the input image contains hidden content with the correct format, then

this content is decrypted and pasted onto its original position in the image.

2.5.1. Parameters

URL http://35.205.100.70:18080/apiSteganographyWatermarking/unhideCroppedEncrypt

edData

Metho

d

POST

Output blurred image that

carries the cropped encrypted

content

The child’s face is encrypted

and hidden inside the image

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

17

Header

Key Value

Content-Type multipart/form-data

Body (Inputs)

Key Value Format

image Steganoimage that contains the hidden, cropped, encrypted content PNG

key Symmetric key for decryption text

Responses (Outputs)

Status Value Description

200 response.jpg Revealed Image

400 {"error": "Cannot decrypt empty data"} The API was called with no inputs

400 {"error": "File not allowed"} Input file is not an image or in a supported

format

400 {"error": "Cannot decrypt data without

key"}

The API was called with no key

400 {"error": "Cannot decrypt data with null

key"}

The key is null

400 {"error": "Nothing is hidden in this

image"}

The image does not contain any hidden

content

2.5.2. Demonstration and Examples

2.5.2.1. Unhide a face

Import the symmetric key to decrypt the

sensitive content
Upload the image that carries the hidden

content

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

18

2.5.2.2. Response

 Blurring 2.6.
This API is responsible for blurring sensitive content in an image, according to the coordinates (x1,

x2, y1, y2) of sensitive content included in that image. The input is an image and a JSON string

containing the coordinates (as a JSON array) that indicate the position-s of the content that is

needed to be covered. The output is the image having the sensitive content blurred.

2.6.1. Parameters

URL http://35.205.100.70:18080/apiSteganographyWatermarking/blur

Method POST

The child’s face is decrypted

and pasted on its original

position in the image

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

19

Header

Key Value

Content-Type multipart/form-data

Body

Key Value Format

image Image to be blurred PNG, JPEG, GIF, BMP

coordinates {"coordinates" : [[x1,x2,y1,y2], [x1,x2,y1,y2], etc]} JSON

Note: It is possible to cover multi-sections of an image by providing multiple coordinates

(x1,x2,y1,y2) with the correct JSON format.

Responses

Status Value Description

200 response.png Image with blurred

content

400 {"error": "Cannot blur empty data"} The API was called

without an image as

input

400 {"error": "File not allowed"} Input file is not an image

or in a supported format

400 {"error": "Cannot blur without coordinates"} The API was called

without coordinates

JSON as input

400 {"error": "Not valid coordinates json. Please send as

{'coordinates':[[x1,x2,y1,y2],[x1,x2,y1,y2]]} etc"}

The coordinates value is

not a JSON

400 {"error": "Wrong coordinates json format. Please send as

{'coordinates':[[x1,x2,y1,y2],[x1,x2,y1,y2]]} etc"}

The coordinates value is

not in the correct JSON

format

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

20

2.6.2. Demonstration and Examples

2.6.2.1. Blur a face

2.6.2.2. Response

 Watermarking 2.7.
This API is responsible for placing a watermark of an ENCASE Logo in the bottom right of an

image. The input is an image and the output is the watermarked image.

The child’s face is blurred

Coordinates in pixels of the sensitive section

(e.g. detected child’s face)

Upload the image that carries the hidden

content

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

21

2.7.1. Parameters

URL http://35.205.100.70:18080/apiSteganographyWatermarking/watermark

Method POST

Header

Key Value

Content-Type multipart/form-data

Body (Inputs)

Key Value Format

image Image to be watermarked PNG, JPEG, GIF, BMP

Responses (Outputs)

Status Value Description

200 response.png Watermarked Image

400 {"error": "Cannot watermark empty

data"}

The API was called without an image as input

400 {"error": "File not allowed"} Input file is not an image or in a supported

format

2.7.2. Demonstration and Examples

2.7.2.1. Watermark an Image

2.7.2.2. Response

Upload the image that needs to be watermarked

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

22

3. Skin and face detection

 System Architecture Flow 3.1.

This intelligent web proxy depending on the datatype, will decide which module to call. With the

call, the intelligent web proxy will also send an execID which indicates which API call is about to be

called and a dataID (in case extra data is required) so that the module knows which information is

eligible to get.

The current system includes many different and independent modules. Due to the design of the

back-end architecture, each module can work independently considering that the right type of

parameters is provided. This type of independent modularity gives freedom both to the system

and the developers to work using many different programming languages, libraries operating

systems. Depending on the API call, the corresponding module will be called. The module will

process the request, using the dataID it will retrieve information from the database and return a

result (again depending on the call) along with an execID. Using the execID, the intelligent web

proxy knows which API call is answered. If found necessary, the data will be stored in the

database using an appropriate dataID for future use.

Watermarked image with the

ENCASE logo

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

23

 Implementation Stack 3.2.

Firstly, we have the front-end where in our case could be the add-on or any other website that

requires our API. The website in Collaboration with an API manager (this case Swagger) would

make an API request. Our current server runs on NGINX with Gunicorn as an App server. Then for

handling the API requests we use Falcon. Depending on the API call, Falcon decides which class to

call. The classes are written in Python 2 using OpenCV. A more detailed list of the libraries used

can be found in APPENDIX A.

When the algorithms finish processing the data, a result is returned in either JSON format or xml

(face recognition training).

Figure 1 – Original image/RGB/HSV/YCbCr and the end average result

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

24

 Demonstration and Use Instructions 3.3.

The implementation of the algorithms and the services can be demonstrated through the swagger

website. Using the front-end server address : http://35.205.100.70:18080 . From here you can

select a specific spec to use. For navigating through the different specs, use the menu toolbar on

the top right.

Figure 3 Navigate through different specs

When you navigate on a spec, you can see the corresponding services available. In the situation of

“WP6 – T6.1 – LK” the site looks like Figure 4.

Figure 2 –Architecture of the proposed in-browser content analysis filter

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

25

Figure 4 “WP6 - T6.1 – LK” Full Website View

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

26

3.3.1. Face Detection

Figure 5 Services of Face Detection

Face detection is made following the theory Viola-Jones algorithm and developed using the

OpenCV library.

An example of using the services in swagger is demonstrated using screenshots from the actual

site. For the POST requests you give a value to the body of the request (Figure 6). In this scenario

an image. The image is uploaded on the proxy server. After the image is processed, the result can

be viewed in the response body(Figure 8). In case of an error, a different message is displayed.

Finally there is the “Curl” screen, where someone can take the actual call and recreate it in a

console terminal, using “curl”. All the other calls with one exception follow the same logic. They

all take as input an image and return an answer in JSON form. In the next session you can read

about the services in more details.

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

27

Figure 6 Upload Image to be tested

Figure 7 The call to the service

Figure 8 Result Returned

The available API calls for face detection are:

 /ImageAnalysisApi/faceDetection/FacesDetected: This call, takes as a parameter an

image. The algorithm detects if there are faces in the image and returns a Boolean

(True/False)

 /ImageAnalysisApi/faceDetection/NumOfFaces: Takes an image as a parameter and

returns the number of faces found in the image.

 /ImageAnalysisApi/faceDetection/FaceCoords: Takes as a parameter an image, it

detects faces and returns their coordinates in the form of x1, x2, y1, y2.

 /ImageAnalysisApi/faceDetection/EyesDetected: Takes an image as a parameter and

returns a Boolean (true/false) if any eyes were detected.

 /ImageAnalysisApi/faceDetection/EyesCoords: Takes an image as a parameter and

returns the eyes coordinates in the form of x1, x2, y1, y2.

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

28

3.3.2. Skin Detection

The skin detection algorithm was developed using the three filters approach described in section

2.5.3. as well as an approach using the human body detection described in Section 2.5.4

The available API calls for skin detection are:

 /ImageAnalysisApi/SkinDetection/SkinPercentageInImage: Takes as an input a

picture and returns the percentage of skin detected in the whole image

 /ImageAnalysisApi/SkinDetection/SkinPercentageOnBody: Takes as an input an

image and returns the percentage of skin detected in different human body parts that

are detected, excluding the percentage detected on the face.

3.3.3. Face Recognition

Face recognition was developed using the LBPH method.

The Face Recognition requirements are covered by one service. This service is the only service

that doesn’t take as input an image, but instead an address. This address returns valuable

information such as the location of the images that the service will need for training for each

person in the house, and the location of the image that is to be tested.

Figure 9 The body of Face Recognition service takes as input an address

The table shows the field that are required to be returned from the service:

Variables Value Description

_Id This is the ID of the family in
the corresponding database

data_id The ID of the data sent for
processing

count_child The number of person the
algorithm will train on

test_loc The location on the server
from where the server can
get the image to be tested

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

29

child_x The location of the images of
child number x. This folder
needs to contain a set of

images of a specific person so
that the algorithm can be

trained on.

The next figure shows an example of how the GET result should look like. In this example there

are 2 children to be identified.

Figure 10 Example of what the GET request should return

The service on the proxy will use this data, get the necessary information, train the set, test the

image and return the identified person’s name with a value of confidence.

Figure 11 The result of face recognition

4. Nudity detection
This section contains the documentation (Windows) for the implemented API calls for:

 Nudity detection in an image – Estimate the nudity probability in a given image

The network takes in an image and gives output a probability (score between 0-1) which can be

used to filter nudity images. Scores < 0.2 indicate that the image is likely to be safe with high

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

30

probability. Scores > 0.8 indicate that the image is highly probable to be nude. Scores in middle

range may be binned for different nudity levels.

The APIs were developed using:

 Python 3 - Programming Language

 Numpy – Python package for scientific computing

 Os – Python package for operating system dependent functionality

 Sys – Python package for System-specific parameters and functions

 Argparse – Python package for command-line options, arguments and sub-commands

 Glob - Python package for Unix style pathname pattern expansion

 Caffe – Python framework for deep learning

 How to use the API 4.1.
Install the requirements

Make sure you have Python 3 installed. Then, navigate to the directory

path ~/aimilios/nudityDetection/ and run the following command in a terminal:

pip install -r requirements.txt

Run the API

Run the service using the following command:

python ……

Call the APIs

We can use the classify.py script to run the nudityDetection model and it prints the nudity

probability score.

>>>> Python classify.py INPUT_IMAGE_PATH

We will get the nudity score returned:

Nudity Probability: 0.975002

4.1.1. Demonstration and Examples

Below, are three example images with their respective results:

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

31

4.1.1.1. Example 1

*Image is blurred because it contains pornographic material.

Result

Nudity Probability: 0.975002

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

32

4.1.1.2. Example 2

Result

Nudity Probability: 0.000001

4.1.1.3. Example 3

Result

Nudity Probability: 0.108276
Result

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

33

5. Sensitive Content Detection
For this work, we used some existing libraries1 and we created scripts that can successfully detect:

 Dates

 Times

 Phone numbers

 Phone numbers with extensions

 Links

 Emails

 IP addresses

 IPv6 addresses

 Prices

 Credit card numbers

 Street Addresses

 Zip codes

 Deployment 5.1.
This script is deployed in the Intelligent Web-Proxy of our architecture, in port 8585

(35.205.100.70:8585). It offers the following APIs:

5.1.1. Detect Sensitive Content from Post

In this scenario, the API receives as an input a text, and returns a json file of the detected sensitive

contents.

Request:

GET /apiDetectSensitiveContent/fromPost?text="Hello my address is 1 Georgiou street, AJ1698. I

will wait for you at 16:00. If you can't find me, call me at 0035799803340. BTW, I've just bought a

new phone worth €500, and I used my credit card 1234569814789632" HTTP/1.1

Host: 35.205.100.70:8585

cache-control: no-cache

Postman-Token: 076eb6b1-7826-4af1-976a-b40c2af60e35

Response:

{

 "dates": [],

 "times": [

 "16:00"

],

 "links": [],

 "phones": [

1
 https://github.com/madisonmay/CommonRegex

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

34

 "0035799803340"

],

 "ext_phones": [],

 "emails": [],

 "ips": [],

 "prices": [

 "€500"

],

 "credit_cards": [

 "1234569814789632"

],

 "street_addresses": [

 "1 Georgiou street,"

],

 "po_boxes": [],

 "zip_codes": []

}

5.1.2. Detect Sensitive Content from Chat
In this scenario, the API receives as an input a URL, and returns a json file of the detected sensitive

contents.

Request:

GET

/apiDetectSensitiveContent/fromChat?url=http://35.205.100.70:18082/dal/ObtainData/chat/dat

e_created/11-12-2018/conv_https:--www.facebook.com-somebaduser.papas.5_https:--

www.facebook.com-petran88 HTTP/1.1

Host: 35.205.100.70:8585

cache-control: no-cache

Postman-Token: da17ac73-cf4d-48ce-99eb-e4570ec9d601

Response:

{

 "dates": [

 "17-12-2018",

 "17-12-2018",

 "11-12-2018"

],

 "times": [],

 "links": [

 "--www.facebook.com-somebaduser.pa",

 "--www.facebook.com",

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

35

 "--www.facebook.com"

],

 "phones": [

 "123886417",

 "12388603"

],

 "ext_phones": [],

 "emails": [],

 "ips": [],

 "prices": [],

 "credit_cards": [],

 "street_addresses": [

 "2 cover mehi richard."

],

 "po_boxes": [],

 "zip_codes": []

}

 Demonstration Description 5.2.
For this Demonstration, a minor tries to post sensitive content publicly in his Facebook profile.

The browser add-on captures this information and sends it to the IWP for analysis. If the IWP

detects any sensitive content, then the minor will be notified immediately.

Please visit the link below to watch a video of this demonstration:

https://www.dropbox.com/s/hgsudwh37lu5z8r/SensitiveContentDetection.mp4?dl=0

6. Attribute-based encryption

 Introduction 6.1.
The following document reports the Attribute-based Encryption (Task 6.3) API Implementation

based on the requirements of the European Project of Encase. The following API calls were

developed for the purpose of Task 6.3 and Task 6.4.

 Encrypt Image using Ciphertext Policy ABE – Hide image by defining an access policy and

generates pair of keys for the users.

 Decrypt Image – Unhide Image by using the private key of a user.

In the following sections the implemented API calls are briefly described with step by step

screenshots.

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

36

 Tools and Libraries 6.2.
The libraries and tools that were used for the development of the APIs are the following:

 Python 3 - Programming Language

 Charm: A Framework for Rapidly Prototyping Cryptosystems

 API Implementation – Demonstration and Use Instructions 6.3.

6.3.1. Image Encryption

The following API calls are responsible for the attribute-based encryption scheme. As it was stated

in D6.2, the attribute-based encryption has four phases that happening in the background except

the encryption and decryption that is happening on the intelligent web proxy. We suppose that

the private key is known just for demonstration purposes.

6.3.2. Encryption of Image Demonstration

 Parameters:

Header:

Key Value

Content-Type multipart/form-data

Inputs:

Key Value Format

image Image to be hidden JPEG

Access Policy Access Policy Tree text

Outputs:

Status Value Description

200 Encrypted.jpeg Encrypted Image

400 {"error": "Cannot use attribute based
without input image"}

The API was called with input image

400 {"error": "Cannot encrypt image
without access tree"}

The API was called with access policy

URL virtserver.swaggerhub.com/Individual68/T6.3AttributeBasedEncryption/1.0.0/EncryptImage

Method POST

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

37

6.3.2.1. Demonstration

Figure 12 Encrypted Image With Access Policy

6.3.3. Decryption of Image Demonstration

Parameters:

URL virtserver.swaggerhub.com/Individual68/T6.3AttributeBasedEncryption/1.0.0/DecryptImage

Method POST

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

38

Header:

Key Value

Content-Type multipart/form-data

Inputs:

Key Value Format

image Image to decrypt JPEG

Private Key User Private Key alphanumeric

Outputs:

Status Value Description

200 notEncrypted.jpeg Decrypted Image

400 {"error": "Cannot decrypt attribute
based without input image"}

The API was called with input image

400 {"error": "Cannot decrypt image
without access tree"}

The API was called without entering private
key.

6.3.3.1. Demonstration:

Figure 13 - Decryption API with User's Private Key

Deliverable D6.3: “Implementation of browser
add-on for content detection and protection”

39

Figure 14 Decryption Response

7. Conclusion
The present document provides the description of the Implementation of browser add-on for

content detection and protection of Task 6.4 of the ENCASE project. The sensitive content which

is uploaded and shared through OSNs should be protected from malicious activities and users

should be able to specify the groups of people that can view their sharing data. The

implementation has been focused on the development of image steganography, watermarking

and cryptographic techniques as an effort to address this issue. The outcomes of the

implementation outlines the importance of these techniques and their feasible integration in an

OSN framework for the protection of minors.

8. Copyright and Intellectual Property

The intellectual property will be jointly owned between the Institutions that each of the

ENCASE partners. If a project partner decides to move institutions for the duration of the

project the Institution to which they move would not become a join owner, and the

ownership will remain with the institution at which partners are originally based.

