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ABSTRACT

Botnets in online social networks are increasingly often affecting
the regular flow of discussion, attacking regular users and their
posts, spamming them with irrelevant or offensive content, and
even manipulating the popularity of messages and accounts. Re-
searchers and cybercriminals are involved in an arms race, and
new and updated botnets designed to defeat current detection sys-
tems are constantly developed, rendering such detection systems
obsolete.

In this paper, we motivate the need for a generalized evaluation
in Twitter bot detection and propose a methodology to evaluate
bot classifiers by testing them on unseen bot classes. We show that
this methodology is empirically robust, using bot classes of varying
sizes and characteristics and reaching similar results, and argue
that methods trained and tested on single bot classes or datasets
might not able to generalize to new bot classes. We train one such
classifier on over 200,000 data points and show that it achieves
over 97% accuracy. The data used to train and test this classifier
includes some of the largest and most varied collections of bots
used in literature. We then test this theoretically sound classifier
using our methodology, highlighting that it does not generalize
well to unseen bot classes. Finally, we discuss the implications of
our results, and reasons why some bot classes are easier and faster
to detect than others.
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1 INTRODUCTION

Automated malicious activity on social networks such as Twitter
has been a significant problem for many years now. Fake accounts
controlled by bots are used to perform various types of abuse, e.g.,
sending spam [20, 22], participating in reputation-manipulation
schemes [6, 16, 24, 30], spreading malware [19], and phishing [17].
Large quantities of malicious accounts are often created and con-
trolled by single miscreants, forming so-called botnets [1]. To
counter this problem, the research community has developed a
number of systems to detect and block bot accounts on social net-
works. Such approaches look at either profile characteristics of fake
accounts that distinguish them from legitimate ones [2, 31], at differ-
ences in the social graph of fake and legitimate accounts [7, 13, 27],
at the way in which they are controlled by their operators [8, 32, 39],
or at the content that they post, looking for signs of malicious-
ness [26, 29, 35].

Despite the large body of research on detecting bots on Twit-
ter, this is still an open problem. One reason for this is that bot
detection is an inherently adversarial problem, and once a defense
mechanism is known, adversaries can modify their modus operandi
and avoid detection [41]. Another reason, more fundamental, and
often overlooked by the research community is that detection sys-
tems based on machine learning require example datasets of bots
to be trained on, and these often contain biases. For example, if
a system was trained on a dataset containing only bot accounts
belonging to one botnet, it would learn the idiosyncrasies (e.g., the
times at which messages are typically sent or the spam templates
used) of that specific botnet and become very accurate in detecting
it. However, when trying to identify bots belonging to other botnets
it would perform very poorly, because rather than learning the gen-
eral characteristics of bots on Twitter, it would overfit on a single
family of bots. Even having multiple families of bots represented in
the training set, there is no guarantee that the system will be able
to identify new bot types or new botnets as they appear.

In this paper, we set to study this problem in a systematic way.
Firstly we collect a dataset that contains more than 20 different
bot classes , most of them used in previous bot detection efforts as
ground truth [11, 12, 17, 18, 21]. Secondly, we propose a methodol-
ogy to overcome this issue and produce a generalized bot detection
method. This methodology takes into account multiple types of
bots, and leverages state-of-art machine learning algorithms for
detection of different types of bots. The training and testing we in-
troduce is done using an effective “Leave-One-Botnet-Out” (LOBO)
method, which allows the machine learning algorithms to train on
data produced by many and diverse bots, and test its accuracy on
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datasets which include bots with behaviors never seen before by
the classifiers.

In particular, we use this novel methodology on these classes
of Twitter bots testing on over 1.5 million bots. We show that the
typical approach of training a model to detect bots using single bot
dataset is extremely effective, effortlessly reaching >97% accuracy.
However, the way these datasets are collected prevents them from
being representative of all bots in Twitter. We demonstrate that
when we mix bot classes equitably in a single dataset, the prediction
power of the same classifier drops significantly. More importantly,
we demonstrate that even this bot-detection system that has been
trained with a variety of bots is incapable of detecting new bot
families that were never observed before. In fact, some “target”
botnets completely mislead the classifier resulting to less than 1%
detection accuracy, meaning 99% of the bots in that class were
classified as users.

This methodology provides a proxy for the real world general-
ization performance of the bot classifier being evaluated. It further
aids in identifying how much each target class is related to the
rest of the bot classes without the need of extensive and costly
inspection.

Our results provide important insights to the research commu-
nity including a way to compare bot detection algorithms, beyond
their stated accuracy. We further suggest high generalization perfor-
mance does not necessarily follow high accuracy. We finally show
the positive insight that even a small portion of certain botnets
can be enough to fully identify them when adding it to a common
learning algorithm, allowing a classifier to quickly scale, and incre-
mentally consider different and newly revealed bots. In summary,
this paper makes the following contributions:

e Shows the need to go beyond common machine learning
metrics like accuracy, precision, recall, etc. for Twitter bot
detection. As even getting near perfect values for all of them
for single bot classes is not necessarily followed by the ability
to detect other botnets.

o Addresses that need by providing a framework with which to
evaluate expected generalization of a bot detection algorithm
by selectively leaving bot classes and behaviours out of the
training data.

o Collects and combines the biggest and broadest botnet library
to date, which it uses to train a Twitter bot classifier.

e Provides a Twitter bot classification strategy that reaches
accuracy values over 97% with a small number of commonly
used features, and evaluates its performance using the gen-
eralization test mentioned earlier.

o Introduces a framework to explore the trade-offs between
adding more data from a single bot class and diversifying
the training data with data from a different bot class. Then
analyzes the amount of new samples needed to reach rea-
sonable performance on an target bot class, and discuss on
why differences in this metric happen.

2 RELATED WORK

Bot Detection. Early approaches to detect bots on Twitter rely on
account characteristics that are typical of fake accounts [2, 31]. Yang
et al. [41] show that these approaches have a hard time keeping up
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with the evolution of bots, and that they require constant retraining.
Another line of work looks at the way in which bots connect with
other accounts, forming social networks that are very different
from the ones built by legitimate accounts [5, 7, 13]. However, Liu
et al [27] show that these techniques can be gamed by adversaries
by exploiting the temporal dynamics used for detection.

Other approaches leverage bots’ similarity in their operation,
such as synchronization in posting messages [8], accesses by a com-
mon set of IP addresses [23, 32], or similar uses of the accounts [39].
Additional work focuses on the content posted by bots. Thomas
et al. [35] analyze the content of the Web pages linked by tweets,
learning to identify signs of spam. Lee et al. [26] look for signs of
evasion commonly used by cybercriminals, e.g., multiple HTTP
redirections. More recently, Nilizadeh et al. [29] presented POISED,
a system that detects malicious messages (e.g., spam) by identifying
ones with anomalous spreading patterns across the Twitter graph.

Fake Accounts. Thomas et al. [36] analyze over a million accounts
suspended by Twitter and, in follow-up work [37] trafficking of
fake Twitter accounts. Yang et al. [40] look at social relationships
between spam accounts on Twitter, while Dave et al. [14] measure
click-spam in ad networks, and Gao et al. [20] analyze spam cam-
paigns on Facebook. Stringhini et al. [30, 33] study the market of
Twitter followers and proposes strategies to detect them in the wild.
Finally, there have been a few efforts both in and out of academia to
identify single botnets in their entirety. Some of them have obtained
large botnets based on geographic anomalies [18] and temporal
anomalies [17]. There have been also analysis on botnets promot-
ing topics or products, including diet pills [28] and even political
candidates [4].

Our work takes features from these efforts, but changes one
important aspect of them. We explicitly test against unseen classes
to evaluate the performance of a classifier. We create a test for this,
which is inspired by cross validation and is thought of as a proxy
for generalization of bot classification. It will be clear that for a bot
detection strategy to be deemed as “generalizable”, the minimum
standard that should be passed is the test designed in this paper.

3 DATASETS

Two datasets were compiled for this paper. First, a botnet dataset
that contains the aggregated content generated from a variety of
bot datasets (some previously used in research as ground truth
[11, 12, 21]) and, second, a real-user dataset.

Each dataset includes the information available from the user’s
profile, and all the retrievable tweets at collection time in accordance
to Twitter’s API limitations. This means that each account in our
dataset contains a maximum of 3,200 tweets authored or retweeted
by that account. The way these datasets were finally constructed is
illustrated in Fig. 1.

3.1 Bot Datasets

In this work, we study to which extent various bot types have
different signatures that can potentially lead to detection failure
when they are first discovered (before enough of their samples are
identified and included to the training set). To do this, we build a
dataset of 20 different botnet types, each with different purpose
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Figure 1: Data collection strategy.

and characteristics. To our knowledge, this is the most extensive
and diverse collection of Twitter bots used so far in the literature.

While most of the datasets have high percentage of bot accounts
associated with them, a few might have small amounts of false
positives in them. This is a trade-off that needs to be made to avoid
inducing bias by filtering these datasets before classification. Do
note that we are only reporting the number of accounts that, at
collection time, had not been suspended by Twitter or marked
as private. This is because suspension or marking an account as
private prevents us from collecting any of its information.

Many of these datasets were obtained from past papers either
from authors or directly querying each of the user IDs in them
against the Twitter APL Some of them come from an API themselves,
and a couple of extra ones are not related to research, but the result
of botnet attacks on two journalists and their own listing of the IDs
that were involved in those attacks. A summary of these datasets is
presented in Table 1. Overall, what follows is how we aggregated
one of the largest and most varied bot datasets in research.

The Star Wars Bots. Dataset A consists of bot accounts that tweet
exclusively quotes from Star Wars novels. It was reported by [18].
The Star Wars bots all share characteristics like a creation period,
id range and small numbers of friends and followers. This dataset
consists of over 355,000 accounts.

The Bursty Bots. The Bursty Bots is a botnet created on Twitter
with the objective of enticing users into blacklisted sites [3, 17].
It’s strategy was simple by using a mention and a shortened or
obfuscated URL. They share some characteristics like having zero
friends and followers, and only a few tweets created immediately
after account creation, only to remain completely silent afterwards.
This dataset B consists of over 500,000 accounts.

DeBot. Debot is a bot detection service that generates daily reports
of bot activity, and stems from the work of [10][9]. It comes with an
API which we were able to query to obtain over 700,000 accounts
that the service detected as bots. This dataset C is unique in our
list, as it is actually the result of a detection strategy, and not either
ground truth or a single botnet. The main feature that DeBot detec-
tion exploits is warped correlation in the tweet timing of different
accounts.

Fake Followers. We explore different fake follower datasets that
have been used in various research studies. Dataset D is used in [12]
and is just described as being fake followers. In contrast, datasets
Q-T are described in [11] as being purchased fake followers from
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different fake follower services (Q) fastfollowerz, (S) intertwitter,
and (T) twittertechnology. All these datasets are used as ground
truth.

Traditional spambots. Datasets H and I are traditional spam
campaigns, pushing links to scam sites. Unfortunately the former
dataset was unavailable for collection, due to all but one of its
accounts being suspended. Datasets K and J are both groups of
accounts spamming job offers. All these datasets were used in [12],
while H was also used in [40].

Social spambots. Social spambots are a relatively new breed of
bots which are better described in [12]. In summary, Social spambots
have evolved to accurately mimic the characteristics of real users,
making them very difficult to identify. Dataset F are retweeters of
an Italian political candidate. Dataset E consists of spammers of
paid apps for mobile devices. Finally, dataset G is made of spammers
of products on sale at Amazon.com.

Honeypot bots. Dataset V consists of bots collected using honey-
pot accounts. A honeypot account is a fake account controlled by a
researcher. The interactions with the account are logged, assuming
they can only come from malicious accounts since the honeypot
account is fake and generally inactive. This dataset was made avail-
able through the DARPA twitter bot challenge [34]. It is used as
ground truth in that competition.

Journalist attack bots. In August 2017, journalists Brian Krebs
and Ben Nimmo were subject to an attack by twitter bots. They
logged some of the bots and published a dataset 1. We collected
the accounts from these two datasets and added them to our bot
datasets as datasets W (the attack on Brian Krebs) and X (the attack
on Ben Nimmo). These datasets are not used as ground truth and, to
the best of our knowledge, have not been used in research before.

Human Annotated Bots. Datasets L,M,N and O have been iden-
tified by humans as bots, and were used as ground truth in [21].
They were divided by the amount of followers that the bots have.
The bands in which they are divided are 900-1100 followers(L),
90k to 110k followers(M), 900k to 1m followers(N), and over 9m
followers(O). Noticeably, the intermediate groups with different
numbers of followers were not available for collection.

!https://krebsonsecurity.com/tag/twitter-bots/
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ID | Name BTS(%) | BTS(Avg) Size
A Star Wars Bots — — | 357,000
B Bursty Bots 2.75 0.04 | 500,000
C DeBot 7.67 0.09 | 700,000
D Fake followers 96.79 0.90 721
E | Social spambots #1 92.35 0.85 551
F Social spambots #2 99.37 0.96 3,320
G | Social spambots #3 94.10 0.87 458
H | Traditional spambots #1 98.28 0.93 872
I Traditional spambots #2 100.00 0.85 1
J Traditional spambots #3 66.08 0.60 283
K | Traditional spambots #4 97.81 0.90 977
L ~ 1k followers 20.89 0.21 387
M | ~ 100K followers 10.90 0.13 534
N ~ 1M followers 1.32 0.02 229
(0] ~ 10M followers 0.00 0.00 26
Q | Fake followers-FSF 100.00 0.96 33
S Fake followers-INT 100.00 0.95 64
T Fake followers-TWT 95.34 0.89 624
V | HoneyPot bots (Darpa) 27.69 0.30 2,521
W | Attack on Ben Nimmo 59.09 0.54 1,558
X Attack on Brian Krebs 83.05 0.78 728

Table 1: Different bot datasets, their identifiers, botometer
metrics, and number of accounts collected for each of them

3.2 Aggregated Bot Dataset

Our aggregated bot dataset is over 1.5 million bots with all their
available tweets. To the best of our knowledge, this is by far the
largest bot dataset that has been analyzed in research. It contains
bots from several different sources, including content polluters,
fake followers, silent accounts, phishing bots, and political bots
(albeit, in a wide array of quantities for each class).

3.3 User Dataset

To contrast against the bot datasets, we face the problem of finding
a suitable real-user dataset of similar size. While we could just
randomly sample Twitter to get an equal amount of users, this
methodology might result in including a small amount of bots in our
real-user class. To minimize this issue, we use crawling techniques
that attempt to give us an unbiased sample of the general real-user
population in Twitter. Please note that this methodology does not
guarantee that no bots will be represented in this dataset: it is just
a way of minimizing their presence.

We begin with a real user as a seed, and follow his outgoing
connections (friends only, not followers). We manually verify that
each of the users in the first level are real users. We use up to 4
steps and obtain over 1 million English speaking users. We assume
that a real user is unlikely to follow bots. A similar approach was
used in [18]. While there might be a few bots in this dataset, the
vast majority of it must be real users.

3.4 Botometer Scores

Botometer [15] (previously botornot) is a public API that provides a
score based on whether an account is likely to be a bot or a user. It
has been used to verify bot accounts in other research [9]. For our
different bot classes, botometer does not perform well enough. This
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Figure 2: Abstract representation of the LOBO test. The clas-
sifier gets trained on all bot classes Bc; except the target
class B¢y, and then tested on the target class to assess how
well the classifier generalizes.

can be seen in Table 1, which shows the average botometer scores
for each of the bot classes. To evaluate whether this tool would be
able to predict the dataset, we provide another metric which is the
percentage of the queried accounts that receive a botometer score
over 0.5 . Because of rate limiting, we only collected botometer
scores for up to 1,000 randomly selected accounts belonging to
each of the classes.

We can see that many of these bot classes are overwhelmingly
classified as users, for example, only 2.75% of the Bursty Bots are
classified as bots, and less than 10% of DeBot bots (dataset C) are
classified as bots. Both of them with average botometer scores less
than 0.1, indicating that they are “very likely” to be users.

Different bot classes will achieve reasonable and even perfect
performance on this bot detection task, but variability between bot
classes is very clear.

4 METHODOLOGY - THE LOBO TEST

Evaluating bot classifiers faces an important challenge. For obvious
reasons, we are unable to evaluate the performance on the bots that
we haven’t seen. This is a real problem, as bots mutate all the time,
and botmasters are actively and creatively trying to get around any
form of detection (which sometimes means suspension from the
service).

In this paper we propose a new form of testing accuracy for
generalization of bot detection strategies. We call it the LOBO
test, for Leave One Botnet Out. It derives inspiration from cross
validation where a section of the available data is kept out, and
used for testing on N number of “fold” Then, the section of the data
used for testing changes on each fold.
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The LOBO test was created to assess whether a classifier can
detect a bot class, which we will call the target class, by training
only with other bot classes, explicitly without any direct knowledge
of the target class itself. It was conceived strictly in the context of a
binary classification between bots and users, to specifically address
the variety of bot classes that such a classifier would face.

We assume the LOBO test to be a proxy for generalization. For
example, let us take the Bursty bots as the target class. We train
the classifier with all other datasets except dataset B, then we test
the classifier against dataset B. If the classifier performs well on
the Bursty bots when it hasn’t actually trained on them, then it
has “generalized” from the seen bot classes to this target class. A
flowchart of how the test should be applied can be seen in Fig 2.

Train-Test split. We now face the need to compare between a
classifier that has been trained with and without the target class.
Addressing this need, we decided to use a 70-30 train-test split
instead of cross validation. Each bot class is randomly and indepen-
dently sampled so that 70% of each bot class is in the training set
and 30% in the testing set. This is to ensure that the smallest classes
will still be represented and tested properly. This strategy allows
us to test a single bot class using the 30% test data for that specific
class, which has never been seen by the classifier.

One could argue that comparing accuracy on 30% of the target
class with accuracy tested on 100% of the target class is misleading.
However, this split is not strictly part of the LOBO test, we find it
useful to test on at least 30% of each bot class to provide context
to the performance of the classifier on the target class when it has
already trained on it.

5 FEATURES FOR CLASSIFICATION

This section describes the features to be used in our classifier. Most
of these features have been used in research before and are relatively
common place. We placed specific importance on not including
graph information. Twitter imposes strong rate limits on graph
information, making it very time consuming to collect the followers
of a popular user (e.g., a celebrity or politician) from Twitter’s API.
Additionally, any real time implementation of this classifier would
need to depend on a few API calls, which does not bode well with
the inclusion of graph information.

Table 2 shows all the features that are used in the classifiers
analysed in this paper. Also, the way the datasets at hand were
finally prepared for feature extraction is illustrated in Fig. 1. Next,
we define some of the features that might not be straight forward.

5.1 User Features

We include several features obtainable directly from a user profile.
Seconds active and days active is the number of seconds and days
between account creation and last obtainable tweet.

Their maximum value is 1 month and 3 years respectively, to
account for differences in collection dates. While these two features
might seem redundant, seconds active is able to detect bots that
tweet immediately after creation date and then fall silent, which
have been detected in large numbers [17, 18]. "Days active" is better
suited to address how long a user has been tweeting. Merging them
in a single feature would possibly lose some of the details. Total
tweet count is the number of lifetime tweets the account has created
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or retweeted, and this number comes directly from the profile and
is not limited to the 3200 tweets that we get through the API. It
includes tweets that have been deleted. We consider these profile
features because they can be obtained from a single API call to the
user profile (which includes the user’s last tweet).

5.2 Tweet Features

We use the tweets and their text obtained from users to extract
useful features. The most basic ones such as number of tweets and
retweets, average tweet and retweet length, etc., are considered,
and other more elaborate features are computed and used.

Hashtags. Hashtags are a way of grouping topics within Twitter.
We have created features from the number of hashtags in analyzed
tweets and retweets, number of unique hashtags, and the unique
hashtag ratio. Unique hashtags are included to account for the
difference between accounts tweeting many times using a small
set of hashtags against people who are involved and tweeting over
many different hashtags.

Mentions. Mentions are a way of publicly addressing another user.
They are also commonly abused by spammers to generate engage-
ment with unsuspecting users. We use the number of mentions in
tweets and in retweets as features. We also include the number of
unique mentions as a feature.

Edit Distance. To account for tweets that are equal or with small
variations, we use the edit distance between tweets and retweets
of a user. The edit distance (or Levenshtein distance) between two
strings is the minimum number of one-character edits to turn one
string into the other. Because of processing time, we only evaluate
this feature for the last 200 tweets and the last 200 retweets of each
user; each of these tweets is compared to the rest, and then the
mean of the distances is computed.

Geolocation. Depending on user preference, each tweet can have
geolocation embedded, consisting of latitude and longitude. We use
the number of tweets that are geolocated, as well as the percentage
of the analyzed tweets that have this information, as features.

Tweet Sources. When apps are used to publish tweets through
Twitter’s API, an app publisher needs to define the "source" of the
tweet. We use the number of unique sources used to publish the
tweets as a feature. While some older botnets rely on using a single
source to publish all of their tweets [17, 18], other botnets may use
as many sources as possible to confuse detection efforts. Regardless
of the assumption, we calculate this feature for each of the users in
our dataset.

Favorites. Marking a tweet as a favorite or “liking” it, is an action
a user can take to endorse a specific tweet. We use the number
of tweets a user has liked as a feature. However, we also include
how many of a user’s tweets have been marked as favorites by
other users, and the ratio between liked tweets and analyzed tweets
(or favorites per tweet). This summarizes both directions of the
endorsement: how much the user being analyzed endorses other
users, and how much other users endorse the user at hand.
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User Features

User ID

# Followers

# Friends

Friend To Follower Ratio

# User favorites

username length

Seconds active

Days active

Total tweet count

Profile description length

Tweet Features

# Geolocated tweets

% of Geolocated Tweets

# Mentions (Rtw)

Avg. Edit distance (Rtw) # Hashtags # Mentions (Twt)
Avg. Edit distance (Twt) # URLs URLs (per tweet)
# Tweets analyzed # Favorites Favorites (per tweet)
# APIs used # Unique hashtags Unique hashtag ratio

# Unique mentions Avg. tweet length

Avg. retweet length

# Retweets analyzed

Table 2: Features employed for classification.

6 EXPERIMENTS

In this section, we describe the experimental setups used, machine
learning classifiers applied and results extracted using the LOBO
test under different scenarios.

6.1 Subsampling

Dataset with class size < 30k In real life, botnets will come in
varying sizes. Furthermore, the amount of data that will be available
for training each bot class will vary even more. As an easy example,
the bot classes analyzed in this paper range from tens of accounts to
hundreds of thousands. To provide an opportunity for our smallest
bot classes, in this experimental setup we limit the numbers of the
three larger bot classes. With this in mind, we include only 30,000
randomly sampled bot accounts from each of these datasets (A, B,
and C). However, we include all of the bots in datasets D-X for a
total of ~ 105,000 bots. The reasoning behind this is to not allow
our three large datasets to exceed 100 times the largest of our other,
smaller, datasets.

To contrast these bots against users, we randomly sample our
real user dataset to only include 105,000 accounts. The aggregation
of these 105k users and 105k bots will be referred to as the dataset
with class size < 30k, C30K for short.

Dataset with class size = 500 Dataset C30K is still quite imbal-
anced, having classes with 30,000 bots and classes with 26 bots.
To measure the effect of bot classes without being biased by their
size, we create another bot dataset. This balanced sub-sampled bot
dataset contains 500 random instances from each of the bot classes
that have over 500 accounts in them. This means a few of the bot
datasets have been excluded, but choosing 500 as the size still allows
us to have 14 bot datasets to evaluate on. This bot dataset is made
of 7,000 bot instances.

To contrast against this bot dataset, we add an equivalent number
of users from our user dataset. The aggregation of both of these
datasets will be referred to as the dataset with class size = 500, or
C500. Please note that this dataset is created on the fly every time
it is needed. Fig. 1 shows the data collection flow from the bot class
identification to our C30K and C500 datasets.
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C30K C500
Algorithm Acc. | AUC | Acc. | AUC
LGBM 97.84% 0.98 | 93.93% 0.94
XGBC 95.91% 0.96 | 91.24% 0.91
Random Forest | 97.02% 0.97 | 91.54% 0.92
DecissionTree | 95.99% 0.96 | 86.93% 0.87
AdaBoost 94.29% 0.94 | 88.88% 0.89
Table 3: Classifier performance on C30K and C500 datasets.
True False False True
Negatives | Positives | Negatives | Positives
LGBM 31161 344 1010 30152
XGBC 30767 738 1824 29338
Random Forest 31073 432 1438 29724
DecissionTree 30241 1264 1250 29912
AdaBoost 30002 1503 2078 29084

Table 4: Confusion Matrices for different classifiers trained
on dataset C30K

6.2 General Classifiers

We utilize our user dataset against the bot training data. All the
features presented in previous Section have been calculated for
every user, making each user representation a 30-dimension vector.
We use some of the most common classifiers (mostly based on trees).
The classifiers to test are Gradient Boosted Trees (using Xgboost
and LightGBM), Random Forests, Decision Trees, and AdaBoost.

All these algorithms are deliberately trained using their most

standard and naive python implementation. Naturally, the perfor-
mance evaluation is done purely on the test data which was not
“seen” during training.
Performance Evaluation - C30K Table 3 shows the results of a
binary classification attempt using the dataset C30K. All of the algo-
rithms show clear signs of an easy separation task, with accuracies
over 95% in most cases. This level of accuracy in bot classifica-
tion is not unheard of: it has been claimed before several times
(e.g., [11, 25, 34]).

To further reiterate that this is not a fluke, we also check the
area under the ROC curve and the confusion matrix for some of
the results generated (Table 4). As can be seen, almost all bots are
classified as bots, and almost all users are classified as users, for all
the algorithms tested (remember that the testing set was 30% of the
C30K dataset, i.e., ~63k instances total). This result was repeated
several times just for consistency, all with random 70-30 training-
test splits and showed little variation. One could argue that our
LGBM classifier is comparable to the state of the art in bot detection,
having been trained with over 200,000 data points spanning a wide
variety of bot classes, achieving accuracy of over 97%.

Performance Evaluation - C500 We need to know the perfor-
mance on a dataset where the bots have the same numbers, since
we cannot always count on having the benefit of large bot data
corpuses like DeBot, Star Wars bots or Bursty bots.

We evaluate performance on dataset C500 with the same strategy,
using the same standard and naive versions of several popular
classification algorithms. The results, while still encouraging, show
clear deterioration in accuracy. In Table 3, we see more than 5%
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loss in accuracy for the best performing algorithm, and a steeper
8% loss for decision trees.

6.3 LOBO TestI- C30K

We run a LOBO test on our C30K bot dataset with class size < 30k.
It follows the steps in Fig. 2. The results are summarized in Tab. 5,
where:

o Target Class is the dataset (Bc;) or bot class that is being
target of training

o Full Model Accuracy is the accuracy of the binary model
trained on the training set of all classes (Train Bc; +
Train Uc). It is calculated on the test subset of the target
class (Test C;). It provides the expected performance of the
general (full) model on the target class, this is useful for
context.

e LOBO Model Accuracy is the accuracy of the model
trained on the dataset that excludes the target class
(Train {Bc;j — Bc;} + Train Uc) when tested on the full
target class (Bc;) . This measure can be tested against the
complete target class because none of it has been used for
training the model?.

e Acc. gain This is just LOBO Model Accuracy subtracted
from Full Model Accuracy. It represents how much a
model’s performance improves when trained on a the target
class, as compared to its performance without training on
the target class. It is a subtraction because differences will
be substantial, so a ratio would have been misleading.

The results speak for themselves. The average expected accu-
racy on a target bot class that the classifier has not been trained
on is 54.88%. This is almost as bad as random (although we are
deliberately excluding the user class from the testing). As would
be expected, there are some exceptions that perform well like the
Bursty bots (B). However, even before excluding the target class
from the training data some of the classes performed as poorly as
19%.

It is noticeable that some of these classes are actually "losing"
accuracy when being included in the test set, this is most likely due
to the large difference in size between the test set for the LOBO
model (Bc;) and the test set for the Full model (TestCy). We further
note that the average accuracy for all classes is well below the
97% achieved originally, which only means that we are performing
better on the large classes than the smaller ones.

6.4 LOBO TestII - C500

One could make the argument that the differences in the perfor-
mance of these classifiers is due to their large imbalance between
their classes. We use dataset C500 to test if this is true.

For this test, there is an expected level of variability, as selecting
just 500 instances of the large bot classes leaves large percentages
of them outside of the training set. In the case of the Bursty Bots (B)
or DeBot bots (C), over 99.9% of the class is kept out of the training.
To mitigate this effect, we do this measurement 100 times for each
of the target dataset. Each of these times we:

ZBecause we are testing only on the bot class, accuracy and recall are the same because
false positives and true negatives are zero
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Target | Full Model | LOBO Model | Accuracy
Class Accuracy Accuracy Gain
A 97.41% 100.00% 60.34%
B 97.43% 99.98% 97.30%
C 98.41% 96.19% 76.85%
D 97.91% 75.11% 68.79%
E 97.83% 92.21% 23.23%
F 97.82% 98.30% 0.36%
G 97.84% 87.59% 11.79%
H 97.97% 73.47% 0.69%
J 97.79% 90.67% 93.29%
K 97.71% 97.92% 2.35%
L 97.76% 87.39% 89.15%
M 97.81% 80.62% 76.59%
N 97.75% 90.54% 71.62%
o 97.82% 100.00% 92.31%
Q 97.76% 80.00% 69.70%
S 97.74% 72.22% 73.44%
T 97.80% 73.45% 69.87%
v 98.24% 72.80% 47.16%
w 97.91% 71.67% 64.83%
X 97.76% 85.71% 79.12%

Table 5: LOBO test on dataset C30K

e Randomly generate the C500 dataset.

e Randomly split the resulting dataset 70% for training and
30% for testing >.

o Train a classifier on the training set that has just been created
(this is referred to as the Full Model)

o Test the Full model on the 30% testing set of the class that will
be evaluated as target. This gives the Full Model Accuracy.

e Remove all instances of the target bot class from the training
set.

e Train a new “LOBO model” on the new training set that lacks
the target class.

o Test the accuracy of the LOBO model on the full target class
(which was recently removed from the training set), and
obtain LOBO Model Accuracy

All of these steps are performed 100 times for each of the bot
classes. What results is the ability to evaluate how a model trained
on balanced bot classes can be expected to perform against a target
bot class which is previously unseen by this model. Furthermore, it
allows performance comparison for when this model has seen just
500 of the target class against not seeing any, with some surprising
results. Table 6 shows average results per bot class. In this table we
added a new measure for context: 1-Class Model Acc. This provides
the accuracy when the model is trained and tested on a single bot
class (dividing the data in the same 70/30 split).

Another interesting fact is that in this test the accuracy on unseen
classes is almost the same as shown in 5 but the average accuracy
of the full model is not. In this test, the per class average accuracy
for the full model is very close to the expected 92.1% shown in Tab.
3.1t is likely due to the balancing of bot classes.

3In contrast to LOBO test I, now every bot class gets a similar number of instances for
training and testing
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Target | 1-Class | Full Model | LOBO Model | Accuracy
Class | Model Acc. | Accuracy Accuracy Gain
A 99.80% 93.90% 62.01% 31.89%
B 99.74% 93.92% 98.14% -4.22%
C 96.42% 94.22% 84.81% 9.41%
D 92.37% 94.17% 86.65% 7.52%
E 97.42% 94.11% 49.19% 44.92%
F 99.47% 94.02% 0.71% 93.31%
H 94.56% 94.92% 2.19% 92.73%
K 99.70% 94.05% 1.97% 92.08%
M 98.43% 94.25% 66.02% 28.23%
T 92.79% 94.25% 88.79% 5.46%
U 91.14% 95.16% 39.44% 55.73%
\' 92.22% 94.57% 77.86% 16.71%
w 94.53% 94.21% 89.82% 4.39%
Avg. 96.05% 94.29% 57.51% 36.78%

Table 6: Lobo test on dataset C500

7 BEYOND THE LOBO TEST
7.1 Relatively Stable Results

To evaluate whether these results are stable or not, we take the
standard deviation of the LOBO model accuracy from LOBO test II.
This was made on dataset C500 and there are 14 classes to analyze.
Almost all of these target classes show low standard deviation of less
than 4%, meaning that regardless of the way the dataset is sampled
and split, the accuracy on each target (unseen) class remains stable.
This suggests that the LOBO test will provide consistent results
overall. The only two exceptions with a standard deviation above
4% are the Star Wars bots at 24% standard deviation, and the Social
Spambots # 1 at 13% .

7.2 Learning Rate

To further analyse the gap of accuracy between the Full Model and
the LOBO model, here we measure how fast the LOBO model can
improve its performance by moving a few of the target bots, from
the test data to the training data. The learning rate is measured on
a single sampled dataset from LOBO Test II. For example, take the
Bursty bots as the target class. Initially, none of the 500 Bursty bots
are included in the training data, and all the 500 form the whole of
the test data.

Consider X as the step size. At the first step, we randomly choose
X Bursty bots and remove them from the test data, and then add
them to the training data (in addition to the training data of the
other bot classes). We train the classifier and record the prediction
results. In the second step, again, we randomly choose X Bursty
bots from the test data, and move them to the training data. And
so on. The test finishes at the 9th step when both the test data and
the training data contain about 250 Bursty bots. The step sizes are
fixed at 0,2,4,8,16,32,64,128 and 256 (basically it is a 2* scale but we
traded the first step for zero bots which matches LOBO test II).Note
that, this being a single C500 dataset, the difference in accuracy
between the 0 bot case and LOBO test I is expected. We also use the
full 500 instances of each of the classes except the target, instead of
limiting to 70%.
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dence) for the classifier accuracy on target classes according
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Figure 4: Error range for mean (blue shade) and classifier ac-
curacy against number of samples seen (for specific classes)

We repeat the above process 50 iterations, and then calculate
the average prediction accuracy at each step for the target class.
Repetition is needed because each of the times different bots from
the target class are being sent into the training set, and it affects
the overall accuracy differently. Finally, we run the learning rate
test for each bot class in Table 6 as a target class. Detailed results
are shown in Table 7.

Figure 3 shows the average accuracy after X samples for all bot
classes that have been tested, with the shaded area representing the
95% confidence interval. The overall trend would suggest that the
classifier has learned to identify most target classes of bots after a
few examples. In contrast, Figure 4 shows that the performance for
different classes varies significantly. It contains the same shaded
area as Figure 3 to show the stark differences between the average
and the widely varying performance of each target class.

We can further notice bot class V (caught by honeypots) making
no reasonable improvement regardless of how many instances of it
has been shown to the classifier. Finally, we can see some classes
that increase dramatically from 50 to 99% accuracy (bot class A) and
from 0-95% accuracy (bot class F), after only 16 and 32 instances,
respectively. This implies learning to identify the whole class while
training only on 6% of it.
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Tgt. Number (X) of samples of target class in training data

Class 0 2 4 8 16 32 64 128 | 256
A 59.4 | 71.7 | 89.4 | 96.4 | 98.8 | 99.9 100 100 100
B 97.4 | 97.4 | 97.7 | 97.4 | 98.1 | 98.6 | 99.0 | 99.6 | 99.8
C 86.7 | 86.5 | 86.9 | 87.3 | 87.5 | 88.0 | 88.6 | 90.9 | 92.9
D 86.7 | 86.8 | 86.7 | 86.8 | 87.0 | 87.6 | 87.8 | 89.0 | 90.6
E 64.9 | 68.6 | 72.2 | 79.8 | 84.9 | 89.4 | 92.8 | 94.7 | 95.9
F 0.8 1.7 | 21.3 | 72.0 | 86.8 | 949 | 96.9 | 97.6 | 983
H 1.7 2.3 43 | 10.5 | 25.7 | 494 | 66.9 | 76.3 | 81.6
K 4.0 | 17.8 | 51.9 | 853 | 95.2 | 96.6 | 985 | 99.2 | 99.5
M 64.2 | 648 | 663 | 67.3 | 70.1 | 74.2 | 80.8 | 87.5 | 95.3
T 89.9 | 89.9 | 89.6 | 89.6 | 89.5 | 89.7 | 90.1 | 90.2 | 91.0
U 33.7 | 340 | 34.6 | 369 | 385 | 43.2 | 50.0 | 59.1 | 69.6
\'% 80.0 | 79.7 | 79.7 | 79.9 | 80.0 | 80.7 | 81.0 | 82.2 | 84.3
w 90.9 | 91.0 | 909 | 91.1 | 91.2 | 91.5 | 91.7 | 92.2 | 93.0

Table 7: Classifier accuracy (%) - trained C500 excluding all
but X samples of target class.

Notably, this section has shown the learning speeds for some
target classes is much higher than others. Improvements of over 20
accuracy percent points for the addition of 2 single instances are
seen in more than one class. Finally, different bot classes show vari-
ous degrees of improvement. Some of the target classes, worryingly,
show almost no improvement at all.

7.3 TSNE plot

In an effort to further understand why some of these bot classes
seem easier to predict than others, we've created a t-distributed
stochastic neighbor embedding (TSNE) plot [38] with the dataset
with class size < 30k. This is a dimensionality reduction algorithm
that is also helpful to visualize high dimension datasets in two
dimension plots. In Figure 5a it is clearly shown that there are
clusters readily formed by different bot classes, where each one is
plotted in a different colour, and users are always in black.

Figure 5a emphasizes the Star Wars bots and the Bursty bots,
which show clear cut groups and clusters that are rarely mixed
with the real users.

In contrast, Figure 5b tells a different tale. We can see the honey-
pot bots (dataset B) mostly sharing the same "strands" with the real
users. These bots are the ones the LOBO test showed to be difficult
to classify, so it is no surprise that they look similar to our user
dataset.

8 DISCUSSION

8.1 Accuracy and Generalization

The average accuracy on target classes was very similar in LOBO
tests I and II. Even after accounting for the fact that the LOBO test
I accuracies on target classes might be affected by chance (since it
was not repeated 100 times) it is interesting to see that both tests
have almost the exact same accuracy on target bot classes.

8.2 Improvements with small data additions

There is a silver lining that is clearly noticeable in this evaluation.
Apparently, it does not matter how much data of a bot class is added
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Figure 5: T-SNE plot of all the bot classes against real users
with emphasis on Star Wars bots and Bursty users (a) and
Bad performing bots (b).

in proportion to the dataset size, improvement in performance
follows.

However, there is one more important fact. In the LOBO test
11, we are testing the classifier on the complete target class. This
means, potentially, that adding 500 bots to a simple classifier allows
us to further detect the full botnet (in this case, 357,000 instances) at
over 99% accuracy up from 62%. If we further delve into the details,
we can see from the learning speed test that adding 16 samples gets
us to 99% accuracy on the Star Wars bots.

8.3 Scalability

While re-training a classifier several times can be computationally
expensive, we have empirically shown that using a few examples
on a dataset with balanced bot classes yields similar and stable
results. Reducing the size of each bot class from several thousands
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to 500 decreases the needed resources significantly. Resource-wise,
this specific implementation of the classifiers used a relatively large
amount of storage capacity, mostly because we are analysing all
the tweets for each of the users. This ends up being several ter-
abytes of data. However, most, if not all, of the methodology can
be implemented in parallel. Collecting, parsing, sampling, training
(each) classifier, and testing can easily be done in parallel.

The importance of this method goes beyond this, as it can readily
allow multiple bot classes to be plugged in as needed, provided there
are more than a few samples of them.

9 CONCLUSION

In this paper, we investigated the resilience of bot detection systems
on Twitter. We showed that these systems perform very well when
trained on homogeneous data, but that their performance drops
dramatically when they are tested on classes of bots that they have
not observed before. We also proposed a methodology to evaluate
how well we can expect any given classifier to generalize on unseen
bot data. It uses different bot datasets or classes as a proxy for the
new and unseen classes. These unseen classes may be developed
in the future, but may also be already present but undetected. This
finding has important implications for our research field, since it
shows that detection systems might not generalize very well, a
problem that becomes particularly important in the fast paced and
inherently adversarial world of social network abuse.
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