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ABSTRACT

We present the design, implementation, validation, and deployment
of the Price $heriff, a highly distributed system for detecting vari-
ous types of online price discrimination in e-commerce. The Price
$heriff uses a peer-to-peer architecture, sandboxing, and secure
multiparty computation to allow users to tunnel price check re-
quests through the browsers of other peers without tainting their
local or server-side browsing history and state. Having operated
the Price $heriff for several months with approximately one thou-
sand real users, we identify several instances of cross-border price
discrimination based on the country of origin. Even within national
borders, we identify several retailers that return different prices for
the same product to different users. We examine whether the ob-
served differences are due to personal-data-induced discrimination
or A/B testing, and conclude that it is the latter.

CCS CONCEPTS

•General and reference→Design; • Information systems→
Crowdsourcing; Online shopping; • Computer systems orga-
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1 INTRODUCTION

Over the last few years, a handful of measurement studies have
indicated that online price discrimination (PD), i.e., the practice of
selling the same product to distinct customers at different prices that
depend on the customer’s online behavior, is becoming increasingly
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commonplace among e-commerce sites. These studies have mostly
established that the location of a customer, and in particular the
country of origin, inferred via his IP address and language settings,
often affects the observed price in ways that cannot be explained
in terms of currency, taxation, duty, or shipping costs.

In a few cases, researchers have even managed to reverse engi-
neer, or at least hypothesize, about the suspected causal relationship
between location and price and have shown, for example, that prices
appear to be adjusted using simple multiplicative factors depending
on the country of the customer [24]. Despite this initial progress
in unveiling cross-border online PD, little is known about other as-
pects of dynamic pricing. For example, despite anecdotal evidence,
there’s little work in measuring dynamic pricing within national
borders. Do customers within the same country see different prices
for the same product by the same vendor? If they do, can this be
attributed to Personal-data-induced price discrimination (PDI-PD)
based on non-location specific customer data (e.g., browsing history
as opposed to IP address) collected by e-commerce sites, or third
party trackers? In which cases are the observed price variations a
result of plain A/B testing performed by pricing software (e.g., [7])
that tries to learn the underlying elasticity curve without using the
personal information of individuals in a discriminatory manner?
Contributions: We have designed, implemented, and operated
the Price $heriff (also referred to as plainly the $heriff), a hybrid
infrastructure / peer-to-peer (P2P) system that uses a network of
dedicated measurement servers around the world and a P2P net-
work formed by the Firefox and Chrome users of the $heriff add-on.
The dedicated servers of the system measure the price of products
using cleanly installed web-browsers and operating systems that
do not maintain any browsing history or cookies. These reference
product prices are compared to the prices observed by the peer
clients. A peer client is either the initiator of a price check request
or fetches product pages on behalf of the initiator. Both, the peer
clients and the dedicated servers fetch the product price at the same
time in order to factor out temporal price variations.

The peer clients’ browsing history and cookies are known to the
online tracking ecosystem, which can use them to drive PDI-PD.
The P2P component equips the system with multiple measurement
points within the same location. These measurement points exhibit
diverse and real-world browsing behaviors, which are used by the
system to detect PDI-PD.

Tunneling requests through other peers broadens our observa-
tional capability but also imposes difficult security and privacy
challenges. We use white-listing to ensure that the P2P system
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cannot be exploited for fetching illegal content. We also use sand-
boxing to protect and cleanse the local state of a browser after
fetching a product page on behalf of another peer user. Protecting
the server-side state of a user, i.e., the information maintained by
trackers at their own servers is more involved. To this end, we en-
force an upper threshold on the number of page fetches that a user
conducts every week on behalf of other peers. Once this thresholds
is exceeded, instead of sending back his actual cookies to e-retailers
and third party trackers, a peer client sends the tracking cookies of
his assigned Doppelganger. A small set of such doppelgangers are
trained and maintained by the back-end of our system to be used
as shield against server-side state pollution of real $heriff peers.
A doppelganger is a browser instance built to closely represent
the browsing profiles of a cluster of real users for whom it is used
as a “double”. The set of maintained doppelgangers is decided by
running a novel and secure version of k-means that, for privacy
reasons, does not require our system to know the actual browsing
profiles of its real $heriff users.

The $heriff has more than 1000 users in 55 countries. Protecting
the server-side state of these users can be achieved with as little
as 40 doppelgangers. In the last 12 months, these users have gen-
erated more than 5700 requests, checking the price of more than
4800 products across 1994 e-commerce sites. Using the collected
data from real users as a compass, we have identified a number
of e-stores generating dynamic prices for distinct customers. We
focus on these sites and conduct a large-scale measurement study
by artificially generating requests for multiple products and tun-
neling them through both our infrastructure and peer proxies. The
generated dataset includes more than 12000 requests across 1000
products, enabling an in-depth analysis that would be unattainable
only with the data generated by our real users.
Findings: The analysis of the aforementioned data yields the fol-
lowing results:
• 76 out of the 1994 checked e-commerce sites return prices that
may vary depending on the country or other characteristics of the
user after having excluded to the best of our ability the effects
of taxation, duties, or currency. The observed price variations are
substantial (e.g., ×7) and can result in actual price differences of
more than $10000 (professional digital camera).
• 7 out of the 76 e-commerce sites where price difference was
observed returned different prices even for users within the same
country. The dispersion of prices within countries (up to ∼ 8% )
appears to be smaller than the ones across countries (up to ∼ 700%).
• Looking at certain e-retailers within specific countries we have
detected signs of A/B price testing as well as biases of some peers
towards consistently high or low prices. However, by analyzing
prices using various statistical models, we conclude that the specific
e-retailers do not perform PDI-PD.
• To extend the scope of our search for price variation within the
same country we also examined the 400 most popular Alexa e-
commerce sites. Yet, we did not find any of them returning different
prices to distinct users within the same country. This also implies
that we did not detect PDI-PD among those 400. Although there
probably exist several other retailers that return dynamic prices
within the same country, and thus might also be engaging in PDI-
PD, we do not believe that this practice is popular.

• In the course of our temporal analysis we came across complex
strategies under which the majority of the products of a retailer
become cheaper through successive small price drops over 20 days.
At the same time, we observed a series of large price jumps for
a few products. If these products are popular, these price jumps
result in an overall revenue and (presumably) profit increase for
the retailer.

Online price discrimination is one of many instances of algo-
rithmic discrimination [16] discussed in the context of an intense
ongoing debate around big data mining, online tracking, privacy,
and the business models of the web. The $heriff exemplifies that
making sense of such technologies, and the controversies around
them, will require the development of a new breed of transparency
software. Although our study did not result in the detection of
PDI-PD by the domains we examined, our software has “watchdog”
value. To the best of our knowledge, this is the first system of its
kind. Its implementation and deployment showcases the challenges
and design principles for such a system. Our design lessons are not
limited to PDI-PD detection; our system’s paradigm can find applica-
tions to domains beyond price discrimination, such as geoblocking,
automatic personalisation, and filter-bubble detection.

2 BACKGROUND AND REQUIREMENTS

Although price discrimination (PD) is probably as old as commerce
itself, its application in e-commerce is fairly recent. Odlyzko [25]
postulated in 2003 that the ease of e-commerce could eventually
backfire for customers due to online PD driven by the personal
information that users leave behind in their “digital trace”. For ex-
ample, users visiting websites that carry expensive products or
users who are geo-located to affluent ZIP codes could be steered to
more expensive products or be displayed higher prices. In terms
of the legality of the practice, there are several barriers, such as
the US Robinson-Patman Act of 1936, or Article 20.2 of the “Ser-
vices Directive” of the EU; this Directive prohibits PD based on
country of origin or country of residence in the member states.
Beyond legislation, there is mounting public concern around “on-
line personalization” of services and the point at which it becomes
discriminatory, especially when driven by personal or sensitive
data. In all these cases, examining the legality or the ethics of a
situation is difficult if not impossible without evidence. Collecting
such evidence, especially evidence of personal-data-induced PD is
exceedingly difficult due to several technical challenges.

Within the context of this work, we are concerned with product
price variations at the same URL. We define the following types of
price variations:
Location-based PD is any product price difference observed at
approximately the same time between two or more geographical
locations (e.g., city or country) excluding any taxation and shipping
costs.
A/B Testing is the practice of serving two or more different prices
for the same product and observing how users respond to them in
order to determine a new price for the product.
PDI-PD is the practice of serving different prices for the same
product to different users within the same geographical location
(e.g., city or country) based on some knowledge about the user
interests and behavior.
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We clarify that our definition of PDI-PD does not include price
differentiation due to the browser or OS used. In our measurements,
we control for the desktop browser or OS as discussed in Sect 7.5.
Also, Hannak et al. [20] found that mobile devices were shown
different prices than desktop ones. The $heriff is not yet ported to
smartphone browsers, so we do not have measurement points from
mobile devices.

In addition, our definition of PDI-PD also applies in cases of
price steering [20]. Online price steering is the practice of showing
different products (or the same products in a different order) to
distinct users for the same search query. Regardless of the search
result, if two users in the same location end up checking the same
product and the price varies, the $heriff will detect the discrep-
ancy as PDI-PD. However, the $heriff cannot discern whether price
steering took place.

Lastly, in our analysis (see Sect. 7.5), we treat all price varia-
tions that are not attributable to location-based PD or PDI-PD as
if they stem from A/B testing. Such unclassified price variations
may, among others, be due to divergent currency converters or
price transitions that occur during a price check request (e.g., due
to algorithmic pricing, which enables hundreds of changes per
day [18]).

Next we elaborate on why collecting evidence of price discrimi-
nation is a challenging distributed systems problem. We do so by
listing the requirements that our Price $heriff has to fulfill.

2.1 General requirements for PD detection

1. User-friendly and adoptable. To detect location-based PD we
need multiple vantage points at distinct cities, counties or states.
Providing sufficient coverage with infrastructure hosts alone would
entail a prohibitive cost for the administrators of our system. The
Price $heriff follows a crowdsourcing-based approach to collect
product prices from varying e-commerce sites from diverse loca-
tions all around the world. Therefore, we need to attract numerous
users. To this end, the system needs to be highly usable by untrained
users with minimal technical background.
2. Scalable and elastic. The underlying measurement system
should be able to keep up with an increasing number of users
and demand for price checks. Since results need to be presented in
real time, the system needs to be able to dynamically allocate more
resources during load peaks.
3. Universal price extraction algorithm. The system needs to
be able to extract product prices from a large variety of e-commerce
sites. Retailers use complex site layouts, different scripting lan-
guages, and pack multiple recommendations in the same page of a
given product, thus making price extraction a non-trivial task.
4. Automated currency conversion. Retailers state prices based
on their local currency or the currency of the customer, which
they try to infer through IP geo-location, browser settings, etc.
Furthermore, they often deviate from standardized currency codes,
thus hindering automated currency conversion.

2.2 PDI-PD detection requirements

1. Distinguishing between location-based and PDI-PD. The
system must be able to discern if a price difference is due to the user
location as opposed to other personal data, such as their past brows-
ing history. Placing dedicated proxy servers at distinct locations

suffices for detecting location-based PD. Detecting, PDI-PD, how-
ever, is substantially more involved since it requires having multiple
measurement points within the same location. E-commerce sites
attempt to bundle and hide PD among complex tax, duty, or ship-
ping costs. Obtaining multiple prices in the same location factors
out these complications.
2. Detecting and collecting information about trackers. To go
beyond just detecting PDI-PD and, for example, to attempt to at-
tribute it to specific reasons, one needs to be able to detect possible
sources of information that may have caused the discrimination.
This requires, among others, to be able to detect the presence of
third party trackers and investigate whether it correlates with ob-
served price variations.
3. Collecting samples of browser history. The need to collect
browsing history samples stems from our hypothesis that recently
visited domains can be used to influence product prices, similar
to how web search results can be influenced by recently searched
keywords [20]. The presence of trackers indicates a possible channel
for obtaining information to drive PDI-PD. However, to reverse
engineer how this information is being used, one needs to obtain
some description of the “profile of a user” as seen by advertisers and
marketers. User profiling relies largely on the observed browsing
behavior of a user, hence a PDI-PD detection system needs to have
access to a sample of a user’s recent browsing history at a domain
level. Note that accessing the entire browsing history of the user
at the granularity of a full URL is not recommended since the full
URLs are prone to leak personally identifiable information about
the user (e.g., the user’ Facebook profile page). The donated samples
of browsing history can then be used to check whether visiting
specific domains impacts the prices observed in other domains,
which would constitute PDI-PD.
4. Preventing the pollution of real user profiles. The system
issues price check requests towards other peers in order to utilize
the diverse profiles of the real users and their geographical location
in search for evidence of PDI-PD. Yet, the system should be able to
isolate the real browsing behavior of its users from any measure-
ment introduced by the system. That is, the tool needs to avoid
polluting the browsing profile of users with an excessive number
of tunneled product page visits.
5. Protecting user privacy. The tool should prevent private user
information leakage to other users. In addition, unless the users
have explicitly volunteered to donate information about the pres-
ence of trackers or samples of their unencrypted past browsing
history, the system should not leak personally identifiable informa-
tion to our infrastructure. Furthermore, the previous requirement
motivates us to introduce the concept of doppelgangers. Our infras-
tructure creates them by using the browsing profile of real users.
Therefore, the process of creating doppelganger profiles needs to
provide strong privacy guarantees. In addition, our infrastructure
should not be able to link doppelganger profiles to real user profiles.

We analyzed various existing tools to determine if their func-
tionality matches our requirements. We opted to build upon the
$heriff [24] PD detection tool because it already satisfies a small
portion of our requirements, thus saving us development effort. In
Appendix, Section 10.1, we provide details on which requirements
$heriff satisfies and which it does not.
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2.3 Ethics, user privacy and security

We have ensured compliance with the EU General Data Protection
Regulation pertaining to collecting, handling and storing data gen-
erated by real users. To that end, we have acquired all the proper
approvals by our institutions and the Spanish Data Protection Au-
thority. Note that we do not collect any personally identifiable
information about our users. By addressing requirements (3) and
(5) in Sect. 2.2, we do a best effort to minimize the PII exposed to
our system. We also blacklist the URLs of user profile or account
management pages of e-retailers because they are likely to include
PII, such as the name of the user. Thus, even if the user accidentally
or knowingly activates the add-on on that page, our system will
not fetch the content. We also periodically analyze our collected
data to discern if PII has accidentally been stored by our system,
e.g., due to omitting to blacklist a URL. In case this happens, we will
immediately delete the pertinent information and update our black-
list. For more information about the information being collected
please visit http://sheriff-v2.dynu.net/views/home.

Furthermore, next to the installation button of the $heriff add-on
on each web browser store, we provide a "Before you install" section
explaining that the add-on is not intended for children and that our
tool performs page requests from e-commerce websites on behalf
of other users. In addition, the first page shown to the user after
installation is the informed consent one, along with a button to
easily uninstall the add-on. Unless the user consents, the add-on is
not activated and does not collect any user information.

Importantly, we also ensure that only e-commerce domains are
allowed during any product price request by filtering against a
whitelist that is manually constructed and updated over time. There-
fore, the peer clients cannot be requested to visit malicious or con-
troversial websites.

Operating our tool for more than a year we did not observe
any instances of malicious behavior on behalf of our users (i.e., ag-
gressive number of price check requests towards specific retailers)
nor any attempts to send price check requests towards suspicious
domains. It is worth mentioning that we did not receive any com-
plaints from our user pool regarding any misbehavior of the add-on
or any other anomalies related to user experience.

3 THE PRICE $HERIFF

In this section, we describe how our design and implementation
satisfies the aforementioned requirements. As it will soon become
apparent, the $heriff is a complex distributed system and therefore
we have chosen to discuss only some of its most interesting and
challenging architectural and implementation aspects.

3.1 Architectural overview

A Price $heriff user can issue a request to check for discrepancies
in the price of a product by employing multiple and diverse clients.
We do so by fetching and comparing the price from a set of fixed
vantage points (Infrastructure Proxy Client - IPC) and a set of
other users (Peer Proxy Client - PPCs) located close to the user
who initiated the price check request. Figure 1 depicts the seven
main components of our architecture: the Browser add-on, the
Measurement servers, the Coordinator, the Database server, the
Network of IPCs and PPCs, the Aggregator, and the Doppelgangers.

Figure 1: The Price $heriff architecture overview. The seven

main components, and the flow of messages during a single

price check request.

* Currency detection confidence is low. Please double check the result.

Currency converter:

Price ce  in 

Currency c

in Euro €  to 

nverter:on

to United States Dollars $ Convert It

Variant Converted Value Original Text
You € 654 EUR654
Windows 7, Chrome, Spain € 654 EUR654
Mac OS, Safari, Spain € 654 EUR654
Linux, Firefox, Spain € 654 EUR654
United States, Tennessee € 617.65* $699
United States, Massachusetts € 617.65* $699
United States, Washington € 617.65* $699
Canada, British Columbia € 646.26 CAD912
Canada, Ontario € 646.26 CAD912
Canada, Ontario € 646.26 CAD912
Israel, Beer-Sheva € 665.07 ILS2,963
Sweden, Scandinavia € 667.37 SEK6,283
Japan, Tokyo € 655.60 JPY88,204
Japan, Hiroshima € 655.60 JPY88,204
Czech Republic, Praha € 662.00 CZK18,215
Korea, Seoul € 668.29 KRW829,075
New Zealand, Dunedin € 668.28 NZD997

All Prices Results Results Details

Figure 2: A sample result page with all the currencies auto-

matically detected and converted to Euro.

3.1.1 Coordinator and Measurement servers. The Coordinator
along with the Measurement servers, the Aggregator and the Data-
base server constitute the back-end of our system. The Coordinator
acts as a load balancer that distributes price check requests from
the browser add-ons to the multiple Measurement servers. Impor-
tantly, the Coordinator also tracks all the PPCs in the system. This
is because it is tasked with forwarding to the selected measurement
server the list of PPCs that reside in the same geographical location
as the initiator of the price check request (see Sec. 3.2). Our system
can dynamically attach and detach Measurement servers according
to the number of concurrent user requests.

The structure of the system back-end is presented in Fig.3.
The Measurement servers carry out price checks by distributing

requests to (Infrastructure and Peer) Proxy Clients. The Database
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Coordinator
Server

More Measurement
Servers on demand

Monitoring signals

Database
Servers

Monitoring signals

Data communication

Figure 3: The structure of the Price Detective back-end.

server stores all the information collected from the Measurement
servers. Initially, the system was implemented with an RDBMS
running on eachMeasurement server. This design led to consistency
issues between multiple RDBMS running at distinct Measurement
servers. Therefore, we switched to a scheme with a single shared
database running on its own separate server. The Database server is
only responsible to host the back-end database (MySQL [3]) of the
system. We performed several RDBMS performance tunings such
as increasing the number of connection threads kept in memory,
using fast stored procedure calls, etc. Centralizing the database on
a separate node has the additional benefit of reducing the number
of required high-end servers since the Measurement servers can
now run in more lightweight hardware (See Appendix, Sect. 10.2.1
for more details).

3.1.2 Browser add-on. The add-on enables users to initiate a
price check request by navigating to a product page and highlight-
ing the price. Using the API of the Firefox and Chrome browsers,
we are able to directly access all major services that the browsers
offer, such as the history service, cookie service, options, cache
memory, HTTP headers, etc. Thus, it is also able to access third
party domain and browser history information. No information
leaves the browser unless the user explicitly opts-in to help us
search for PDI-PD by donating such info. The third party domains
are also available at the result page to inform the user about what
domains she has visited in the background.

3.1.3 Network of proxy clients and doppelgangers. Proxy clients
accept instructions from a Measurement server to fetch a specific
product page and return the HTML code back to the Measurement
server. The two different types of Proxy Client processes reside
on dedicated infrastructure nodes that are dispersed in diverse
geographic locations (IPC) and on the browser add-ons (PPC). The
Measurement server issues requests to proxy clients on behalf of a
user. When the proxy clients send to the Measurement server the
page’s code, it parses it and shows the results back to the user who
initiated the request.

When a Measurement server asks a PPC to fetch a product page
from an e-retailer, we are inevitably altering the state the e-retailer
keeps for that peer. That is, the e-retailer server may infer that the
user behind that PPC is interested in the visited product, while in
reality the product page was downloaded only to serve the purpose
of our system.

In order to avoid overly altering (i.e., polluting) the server-
side state of PPCs, we introduce the notion of doppelgangers (see
Sect. 3.6.2). A doppelganger is a browser instance built to closely

represent the browsing profiles of a cluster of real users. A PPC
can fetch product pages by using the client-side state (i.e., cookies
or other tokens) of its assigned doppelganger, thus protecting his
own cookies from being connected to page downloads that do not
match his true interests. Doppelgangers are created and maintained
on a set of infrastructure clients managed by the Coordinator. As-
signing doppelgangers to users is carried out by the Coordinator
in cooperation with the Aggregator, by using a privacy-preserving
clustering protocol that protects the browsing profile of our users.
After a doppelganger has served a certain number of price check
requests, its profile is considered polluted. Thus, it is discarded and
is regenerated with a new client- and server-side state.

3.2 Price check request protocol

In Fig. 1 we can see the steps involved in a product price check
request. The user performs step 1, which includes the navigation
to an e-store and the selection of the product price. The add-on
contacts the Coordinator to get a globally unique job ID and the
address of the available Measurement server that will serve the
request. Upon receiving the request, the Coordinator compares the
requested domain against a whitelist of acceptable domains. This
step is required to make sure that we only allow requests towards
sanctioned e-commerce websites. Rejected requests are collected in
the background for manual inspection and update of the whitelist.

Besides coordinating the Measurement servers, managing their
load and whitelisting price check requests, the Coordinator is also
responsible for tracking the PPCs (browsers with the add-on in-
stalled) within the system. Each time a web browser with the Price
$heriff add-on starts, it sends a message to the Coordinator with its
peer ID and location. The Coordinator maintains lists with peer IDs
grouped together based on each browser’s location at a zip-code,
city or country level, depending on the granularity of the available
geo-location service. During step 1.1 the Coordinator sends the list
of other PPC IDs in the location of the initiating user to the selected
Measurement server.

During step 2, the browser add-on constructs a path of HTML
Tags, which we refer to as Tags Path (see Fig. 4), towards the prod-
uct price that has been highlighted by the user using his cursor,
and forwards the request to the Measurement server. The request
includes the URL of the product’s web page alongside the Tags
Path.

During step 3.1, the Measurement server requests from all the
IPCs to download the product page. (We currently have 30 deployed
IPCs.) At the same time, in step 3.2, the Measurement server asks
from the PPCs received during step 1.1 to download the product
page (remote page request). At this point, if any of the PPCs reaches
a predefined page request threshold (see Sect. 3.6.2), it does not fetch
the page using its own client-side state. Instead it sends, in step 3.3,
a request for its corresponding doppelganger ID to the Aggregator
("Doppelganger ID request" - red dotted arrow). It subsequently uses
this ID in step 3.4 to request the cookies and other tokens (client-
side state) from the Coordinator ("Doppelganger client-side state
request" - red dotted arrow). The add-on installs that client-side
state and requests the page from its sandboxed browser environ-
ment. At the end of steps 3.1 and 3.2, the IPCs and PPCs send the
downloaded product page to the Measurement server.
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Note that to preserve the privacy of the initiator peer against
other PPCs, the PPCs are not directly contacted by the initiator.
Thus they never learn an association between a unique peer iden-
tifier (e.g., IP) and the pages the peer visits. The only information
released to the PPC about the initiator is that it is a peer residing
in the same geographic location as the PPC.

Upon receiving the product pages, the Measurement server uses
the Tags Path to locate the product price within the pages. The price
is automatically extracted and converted to the currency requested
by the user who initiated the request. We obtain exchange rates
in real time and use several heuristics to accurately detect various
currencies. Next, the Measurement server saves all the information
in the Database server (step 4). At step 5, it forwards the results to
the user’s browser add-on. In Fig. 2 we present an example of the
add-on’s results page for a price check.

At this point the browser executes AJAX requests to theMeasure-
ment server to receive any result updates until the measurement
server replies with a ’request finish’ response.

The presented architecture is able to handle multiple concurrent
price check requests. Each measurement server can also handle
multiple price check requests in parallel. New measurement servers
can be assigned to the system dynamically according to load and
availability policies.
Discussion.We now discuss how the retailers can detect and ac-
tively subvert our tool. As mentioned above, the tool uses two types
of measurement points, the IPCs and the PPCs. The IPCs are more
prone to detection since their IP addresses are usually the same
over time. A retailer can detect any abnormal activity of the IPC by
counting the frequency of the visits from the same IP. If the number
of page requests is above some internal frequency threshold then
the retailer may block the IPC request or introduce a CAPTCHA
before serving the final product web page. On the other hand, PPCs
are more diverse in IP addresses since they reside at real user de-
vices and they are greater in number. Furthermore, the IP addresses
of the PPCs typically change over time by their internet service
providers. From the e-retailers’ perspective, detecting and blocking
the PPCs requests is very difficult. Note that during the experiments
reported in this paper, we did not observe any IPC or PPC product
page requests being blocked by retailers.

In the remainder of this section we provide more details on
several aspects of our design.

3.3 Tags Path construction

Fig.4 illustrates how the browser add-on builds the Tags Path, which
enables the Measurement server to locate the price on the product
pages fetched from the IPCs and PPCs. During price selection (step
1), the add-on extracts the HTML tag element that includes the
product price. In our simplified example (Fig.4), the add-on extracts
the tag <span class="price"> $10.00 </span> marked with the num-
ber 4 at the beginning of the line. This HTML tag will be the final
tag on the path that leads to the product price.

The next step is to create a path with HTML tags that can be used
to programmatically locate the price. The add-on starts from the
bottom of the page because the HTML document format requires
some additional information at the beginning of the document
within the HTML Tag <head></head>. The final HTML Tags Path

Figure 4: The browser add-on creates the Tags Path when

the user selects the price. In the above simplified example,

the algorithm starts from the bottom of the page moving

upwards. It creates a new entry for every HTML tag towards

the price.

is located at the bottom of Fig. 4. The first element of the graph is
the starting point (in our example, the word Bottom). Subsequently,
the algorithmmoves upwards. Each step is marked at the beginning
of the line with a number. At each step, the algorithm appends the
corresponding HTML element to the graph.

At line 1, the algorithm appends the ending tag </html>, at line
2 the ending HTML tag </body> and so on, until we reach the
HTML tag that the user initially selected. Now the add-on "knows"
where the product price is located within the HTML code of the
web page. Subsequently, the add-on forwards the Tags Path to
the Measurement server, which uses the Tags Path to extract the
product price from the HTML code returned by different proxy
clients.

Note that the example presented here is simplified. It does not
capture the complexity involved in extracting a product price when
the HTML code includes multiple product prices and when the
result varies between remote page requests. The latter happens
because web pages can be created dynamically or they include
different ads or content tailored to the corresponding user or the
location of the proxy client that requests the page.

3.4 Price check request distribution

After the initial release of the browser add-on and a number of a
few articles and blog posts explaining the purpose of our research
the system encountered significant traffic spikes. Fig. 5 presents
the number of downloads and active users over time for the Firefox
version of the add-on. As can be seen, three major spikes appeared
after such event. The result of these spikes was to have a high
number of remote page requests in a short time window (usually
for a few hours after the release of a new post) pushing our system
to its limits. To overcome this issue and minimize the loss of data
and poor user experience, we decided to implement a load balancing
policy that enables us to minimize the cost of the system, in terms
of resources required to support dynamic number of users, and deal
with this type of traffic spikes.

To achieve load balancing among the Measurement servers, we
devised a simple price check request distribution protocol taking into
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Figure 5: User statistics from the Firefox add-ons service,

presenting the number of downloads and the number of ac-

tive users over time. Similar statistics were observed for the

respective Google Chrome add-on.

URL Port Owner Status Jobs Timestamp
192.168.1.11 80 a@example.com 1 5 2015-03-25 13:14:29
192.168.1.12 80 b@example.com 1 6 2015-03-25 13:14:25
192.168.1.13 80 c@example.com 1 6 2015-03-25 13:14:31
192.168.1.14 80 d@example.com 0 0 2015-03-22 11:41:45
192.168.1.15 80 e@example.com 0 0 2015-03-23 16:21:41
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Job ID = …

1. Browser add-on price request

2. The Coordinator replies with 
(jobID, selected worker IP).  The 
jobs counter increases

3. The add-on forwards the request 
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Figure 6: The steps of the request distribution protocol.

consideration the following observations. Distinct websites yield
varying response times depending on the price-related content
they serve and their capacity. At the same time, we have distinct
Measurement servers with varying processing and networking ca-
pabilities. As a result, we cannot use a naive algorithm to distribute
the jobs among available Measurements servers. For example, the
round robin algorithm [8] would introduce long pending queues
to Measurement servers with lower specifications and slow con-
nections. To this end, our request distribution protocol addresses a
variation of the job shop problem [22] using an online heuristic.

Fig. 6 shows the steps of the price check request distribution pro-
tocol. The Coordinator uses the Measurement server list (shown at
the bottom of Fig. 6) to monitor the status of all available Measure-
ment servers and number of pending jobs assigned to them. The
list holds the following information for each measurement server:
a) the IP or URL; b) the port number; c) the server status (online or
offline); d) the number of pending jobs; and e) a time-stamp. (See
Appendix, Sect. 10.3 for more details.)

The Coordinator monitors each Measurement server’s workload
in real time and assigns new incoming job requests accordingly. The
protocol starts when a browser add-on contacts the Coordinator
with a new request (Fig. 6 - Step 1). Upon receiving the request,
the Coordinator creates a new unique job ID to be able to track

Auto-refresh:h: every 5 seconds

Available Sheriff servers and jobs.

Worker Port Status Jobs Action

192.168.1.11 80 online 0 Delete

192.168.1.12 80 online 0 Delete

192.168.1.13 80 offline 0 Delete

192.168.1.14 80 offline 0 Delete

4 servers found.

Figure 7: Measurement servers monitoring panel. For each

server we monitor the current status (online or offline) and

the number of pending jobs assigned to each server, in real

time.

the request within the system. Subsequently, it selects the server
with the lowest number of pending jobs among all servers that are
currently online. The Coordinator responds to the add-on with the
unique job ID, URL, and port of the selected Measurement server.
At the same time, it increases the job counter of the selected server
(Fig. 6 - Step 2).

After the step 2, the browser add-on has the required information
to contact a Measurement server and request the price check. The
message between the add-on and the Measurement server includes
the product URL, the job ID and the Tags Path (Fig. 6 - Step 3). After
the Measurement server has processed a price check request, it
informs the Coordinator that the corresponding job is completed
(Fig. 6 - Step 4). The Coordinator uses the job ID to determine the
Measurement server that was serving this job, and decreases its
counter.

By using the aforementioned approach, the response time of the
system improves as "slower" servers are assigned fewer requests.
Furthermore, new servers can be dynamically attached to the sys-
tem when traffic spikes are observed to reduce the cost of running
the system.

3.5 The currency detection problem

The system has to be able to measure price differences from a large
number of e-commerce web pages. This task is hindered by the
fact that e-retailers use varying currency notations. Furthermore,
for each IPC, the resulting prices are usually in different curren-
cies depending on each IPC’s location. To help users to identify
price differences on the results page, we implemented a currency
detection and conversion algorithm to convert all the prices in a
common currency. In Fig. 2 we present an example of the results
page for a price check.

The currency detection and conversion algorithm runs on each
Measurement server and is divided into three main parts. The first
part removes any newline characters and multiple spaces. The
second part of the algorithm aims at detecting the price currency.
The currencies can be presented in three different ways: a) The most
common and generally accepted way is the 3 letter notation (e.g.,
USD), b) a custom notation that e-retailer may decide to use (e.g.,
US$); and c) a currency symbol (e.g., $). The algorithm follows the



SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA C. Iordanou et al.

above order to identify the currency. More specifically, in the case
(a) the detection is straight forward. In the case (b) the algorithm
tries to match the word with a record in the custom currency list
that we empirically built based on notations that some popular
e-retailers use. In the case (c) the converted amounts are annotated
with a red asterisk to notify the user that the currency detection
algorithm’s confidence is low. This can happen, for example, when
e-retailers use the dollar sign ($) to represent ambiguously the
Australian, Canadian or US dollar. To handle such cases, we also
include a currency conversion tool at the bottom of the result
page (Fig. 2) so that the user can manually perform the conversion.
Lastly, if no match is found, then either the selected text does not
include any currency symbol or the e-retailer uses some unknown
notation to represent currencies. In this case, the displayed prices
are not converted to a common currency until we update the custom
currency notation list.

The third part of the algorithm tries to extract the price. Note
that the system accepts requests when the selected string has less
than 25 characters and at least one digit. These two constraints,
combined with input sanitization, are in place as a sanity check
and to prevent code injection attacks. If we are unable to detect the
price value, this means that the processed word is a concatenation
of letter and number words. In such case, we split the single word
into words of letters and words of digits and repeat the part 2 of
the algorithm.

3.6 Avoiding PPC state pollution

Price discrimination may take place by leveraging client-side and
server-side state. By client-side state we refer to 3rd-party cookies
(which among others indicate pages the user has visited), cookies set
by e-retailers themselves (which may authenticate the user or store
shopping carts, etc.), JSON Web Tokens (JWT), and in general any
state that is stored on the browser as a result of the user browsing
activity. With serve-side state, we denote any information that an e-
retailer may retain about a user. This includes product pages viewed,
purchase history, etc. User identification to build the server-site
state may be achieved by means of account credentials or cookies
(hence, client-side state). It can also be achieved by utilizing their
IP or by performing device or browser fingerprinting [14, 15].

E-retailers may discriminate using the client-side state that brow-
sers sent to them (e.g., domains visited). If they have uniquely
identified a user, they may also discriminate using the server-side
state they have stored for that given user. We need to be able to
detect both types of discrimination. Therefore, when a PPC serves a
price check request initiated by another peer, it must submit its own
client-side state to the requested domain. However, this will alter
any server-side state kept for that PPC by that domain. Furthermore,
cookies set when fetching the remotely requested page may also
pollute the client-side state.

Therefore the PPC state, either at the client-side or at the server-
side, becomes polluted with state that does not represent the PPC’s
local user’s browsing behavior. The side-effects of such pollution
are multifaceted. First, profile pollution hinders the detection of
PDI-PD by progressively making all peers’ browsing behavior ap-
pear uniform. In particular, if we do not constrain the number of
price check requests in which we expose the real profile of a user

towards the various e-retailers, the users will end up showing inter-
est towards the same set of products reducing the diversity of our
user pool. Consequently, our capacity to observe PDI-PD would
be diminished. Second, it can cause the profile of a PPC to change
substantially from its original one, thereby creating undesirable
consequences. That is, irrelevant advertisements and recommenda-
tions being shown to the local user based on visits to product pages
fetched for price check requests initiated by other users.

We prevent pollution of the client-side state by sandboxing prod-
uct price checks and deleting the cookies set when the product page
is fetched (see Section 3.6.1). Preventing pollution of the server-side
state is more involved and employs doppelgangers (see Section 3.6.2).

3.6.1 Sandboxing PPCs. To sandbox the request for product
pages by PPCs caused by price check requests, we use several
browser extension APIs [4, 5] that alter the default behavior of
the corresponding browser during the request execution. We com-
bine multiple API calls including the cookie service, the HTTP(S)
connection service, the browser history service and the browser
cache memory service. At the end of such request, the sandboxed
environment is deleted keeping the browser history and cookies
clean of any trace of the price check request.

We are able to detect, add and delete cookies and other tokens
that are inserted due to product page requests, irrespective of the
techniques used to install them. For example, to delete the cookie
from the HTTP(S) header, we monitor the HTTP(S) connection and
delete the cookie before it reaches the browser’s cookie service. The
add-on is also able to detect cookies that are created dynamically
by JavaScript code. Such cookies can be detected by monitoring the
cookie service for any change during the page requests. To delete
any traces of the requested product page URL, we use the browser
history service and browser cache memory service to clean up the
corresponding records.

We evaluated both versions of the $heriff add-on (Google Chrome
and Mozilla Firefox) in three popular operating systems (Windows,
Macintosh and Linux) with more than 30 beta testers. We also
assessed the add-on on a number of virtual machines (VMs) with
freshly installed operating system and browsers. We ran the beta
testing phase for one week sending price check requests between all
testers, while the VMs only serving remote product page requests.
We did not observe any cookies installed nor any traces of remote
product page requests in any VM. We received similar feedback
from all the beta testers.

3.6.2 Mitigating server-side state pollution. Our solution to the
server-side pollution problem involves PPCs serving price check
requests up to a predefined threshold of tolerable profile pollution.
If the real user of the PPC has never visited the targetted domain,
it executes the request and deletes the client-side state assosiated
with that domain as described in the previous section. Normally in
this case, no server-side state pollution takes place and no threshold
needs to be enforced. On the other hand, if the real PPC user has
already visited the domain, we should not delete its associated
client-side state because she needs it. For each e-commerce domain,
we consider that 25% of additional products visits due to price check
requests constitutes a tolerable level of pollution1. Hence, we allow

1Note that further study is required to determine the precise tolerable pollution per
domain.
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one new product page request for every 4 product pages that the
real user of the PPC has visited on the given domain.

Above this per-domain threshold, a PPC no longer serves re-
quests for the given domain using its client-side state, rather it uses
the client-side state of its doppelganger (see Sect 3.7). A doppel-
ganger is a fake user with a browsing profile similar to the ones
of real users, which however does not correspond to the browsing
profile of any real user. Note that doppelgangers cannot prevent
pollution due to server-side state built via IP tracking or finger-
printing.2

To protect the confidentiality of PPC browsing profiles, we should
not have one doppelganger per PPC. Therefore, the Coordinator
clusters users according to their browsing profiles and assigns to
each user one doppelganger (k-mean) browsing profile vector com-
puted as described in Sect. 3.7. The Coordinator asks from dedicated
infrastructure clients to execute the doppelganger browsing profile
vectors by fetching websites and accumulating client-state, which
they send back to the Coordinator. Besides enhancing confidential-
ity, the clustering reduces the load on our infrastructure because it
needs to train and manage a small number of doppelgangers, while
ensuring that their browsing profiles are still representative of our
real users’ browsing behaviors.

Therefore, each doppelganger profile corresponds to a single
cluster comprising real user profiles that resemble each other. By
definition, the real profile of a user has a higher visited domain
diversity compared to its doppelganger. Thus, we partially allow
the use of real user profiles to increase the probability to observe
any instances of PDI-PD with the downside of introducing a small
amount of pollution to the user profile. When a PPC reaches the
predefined level of acceptable pollution, instead of rejecting any
consequent price check request it swaps in its doppelganger profile
client-state to execute the product page request. By doing so the
PPC exposes a less accurate representation of the real user, yet it
remains an active vantage point in its current geographical location
(IP) rather than being altogether discarded. Without the doppel-
ganger profiles the geographical diversity of the P2P network would
decrease dramatically during price check request peeks, especially
for countries with only few peers available.

If a PPC has already reached the threshold of tolerable pollution
and is called upon to serve a product page request, it asks the Coor-
dinator for the client-side state of its doppelganger. It subsequently
installs the doppelganger’s client-side state in a sandboxed environ-
ment and fetches the page of the requested product while emulating
a doppelganger from its own IP address. Our system guarantees
that only the doppelganger’s client-side state leaves the browser
even if the visited page includes cookie matching code or other
re-directions. Note that we apply a similar pollution-prevention
rationale with the one we employ for real PPCs. If the doppelganger
has never visited a domain, we simply delete the associated client-
side state. If it has, we allow one product page request for every
4 requests performed during the creation of the doppelganger. If

2In 2013 only 0.04% of the Alexa top 1Mwebsites where observed to use fingerprinting
code [15]. A similar study one year later [14] showed that 5.5% of the Alexa top 100K
domains was serving fingerprinting code and the 95% of the overall 5.5% was served
by the addthis.com domain. These studies show that the likelihood of exposing our
users to domains that serve fingerprinting code is low.

50% of the domains visited by the doppelganger are saturated, we
request from infrastructure clients to regenerate the doppelganger.

3.7 Doppelganger creation

The Price $heriff infrastructure must build doppelgangers with
profiles that “look” similar to the profiles of the PPCs. To this end, we
cluster users based on their browsing profile vectors. The browsing
profile vector of a user is a (normalized) one dimensional vector that
defines the frequency of visits to each ofm domains. The frequency
values are in [0, 1], where 0 indicates that the user has no visits
to that domain and 1 indicates that is the most visited domain of
the user. (We defer a discussion on how to select such domains to
Section 4.) We use k-means clustering and create k centroids that
define the browsing profile vectors of the doppelganger. Hence, the
doppelganger derived from a given cluster centroid is assigned to
all users included in that cluster.

In a straw-man solution, the PPCs would send their browsing
profile vectors to our infrastructure as cleartext so that we cluster
them and define doppelgangers. However, this would have unde-
sirable privacy implications. First, peers who share their browsing
history, even if they use an anonymity network (e.g., Tor [11]),
are subject to unique identification by an infrastructure that col-
ludes with other domains. As shown in [26], a browsing profile
vector with only a handful of entries suffices to uniquely identify
a user. If our infrastructure colludes with a few external domains,
it can unveil sensitive information (username, credit card, etc) of
a uniquely identified user, while offering full behavioral profiles
to the colluding parties. For example, a colluding e-store can now
learn not only the browsing history of a user with respect to its
own site, but also his browsing history at other domains too. This
information is valuable enough to motivate the owners of the in-
frastructure to sell the browsing profiles to e-retailers. Second, even
if the exact peer browsing profiles are somehow concealed from the
infrastructure, the mapping between a peer’s IP and a doppelganger
unveils to the infrastructure sufficient knowledge about the peer’s
browsing behavior, which it can then exploit by colluding with
external domains.

To address the above privacy-related shortcomings we devised
a cryptographic protocol for privacy-preserving k-means compu-
tation. Under this protocol, PPCs share their browsing profile in
an encrypted form. The k-means computation is split between the
Coordinator and a second trusted entity called Aggregator. At the
end of the computation, the Coordinator only learns the browsing
profile vectors of the k cluster centroids (i.e., the profiles of the dop-
pelgangers). The Aggregator only learns which PPCs are mapped
to each cluster, but it does not learn the profile of any PPC nor the
one of any centroid. As long as the Coordinator and the Aggregator
do not collude, our protocols allows to cluster users based on their
browsing profiles vectors, while keeping the actual profiles private.

We envision that a trustworthy non-governmental organization
or a data protection authority will run the Aggregator in the future,
while the Coordinator runs at our facilities. One may argue that
since we place trust on the Aggregator, we could entrust it with
the cleartext profiles of the PPCs. However we chose to compart-
mentalize the shared information and the computation, in order to
minimize trust on a single system component. We trust the Aggre-
gator with the mapping between PPCs and clusters, but not with
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cleartext profiles or the cluster centroids. At the same time, user
information is less vulnerable to an Aggregator security breach that
does not involve cooperation with the Price $heriff infrastructure.
We believe that such reduced liability renders our system more
adoptable by external entities.

To download the client-side state of the assigned doppelganger,
a PPC contacts the Aggregator to learn the ID of its assigned dop-
pelganger. To prevent the Coordinator from learning to which
centroid a PPC maps, the PPC contacts the Coordinator through
an anonymity network to obtain the client-side state of the dop-
pelganger. Because users remain anonymous to the Coordinator,
anybody could abuse the service and query for all the doppelganger
profiles. This would facilitate the blacklisting of doppelganger re-
mote page requests. To address this issue, doppelganger IDs are
random and sufficiently long (256 bits). In this way, the doppel-
ganger IDs act as a bearer token and the Coordinator grants the
doppelganger client-side state only to those who submit the correct
token.

3.8 Privacy-preserving k-means computation

We define the browsing profile of a user as the number of visits to
each ofm domains over a given period of time. Therefore, each PPC
is represented by a point in anm-dimensional space where each
dimension is an Internet domain and the (normalized) coordinate
represents the amount of visits to that domain within the browsing
history of that PPC.

We face the issue of clustering users based on their browsing
profiles, while keeping such information private to its owner. This
could be achieved with any of the secure Multi-Party Computation
(MPC) frameworks available [17, 21], but it would require each user
to be online while clustering takes place. In our web setting, it is not
practical to require all clients to be online at a given time. Rather,
we want a client to provide its (encrypted) point and then be able
to go offline. Towards this goal, the Aggregator, helps computing
clusters and releases PPCs from the burden of being online. In
particular, the Aggregator maintains the mapping between a client
ID and a cluster ID, but does not learn the actual client point, nor
the cluster centroids. At the same time, the Coordinator learns the
cluster centroids, without learning the private point of any client,
or which clients are mapped to a given cluster. (The Coordinator
learns, however, the cardinality of each cluster at each iteration.)

Our private k-means protocol builds on top of the functional en-
cryption scheme of [13] to compute the dot-product of two private
vectors. In particular, it builds on top of the additively homomor-
phic version of ElGamal [19] where messages are encrypted “at the
exponent” (See Sect.10.4).

Our intuition is that given twom-dimensional points a = (ai )i ∈[m],

b = (bi )i ∈[m] we compute the squared distanced2(a, b) =
∑
i=[m] a

2
i +∑

i=[m] b
2
i − 2

∑
i=[m] aibi by evaluating the dot-product of the

vectors c =
∑
i=[m] a

2
i , 1,a1, . . . ,am , s = 1,

∑
i=[m] a

2
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Therefore, we set point a to be the browsing profile of a user and
point b to be the browsing profile of a centroid. Given a (resp. b),
the user (resp. the Coordinator) can privately compute vector c
(resp. s).

Before clustering actually starts, a client is only asked to encrypt
c under the Coordinator public key and send it to the Aggregator.
Once the Aggregator has received the encrypted client vectors, the

protocol iterates over two phases: a) client-cluster mapping and
(b) cluster centroid update. During phase (a), the Aggregator maps
clients to clusters by learning the distance between a client point
and all the cluster centroids. Distance computation between the
two points is carried out by leveraging the dot-product protocol
of [13] where the Coordinator act as the server with private input
s and the Aggregator runs as the client with input the encrypted
vector c as received by the client. Note that the Aggregator learns
d2(a, b) but it does not learn the client point, nor it learns the cluster
centroids. Phase (b) starts when all clients have been assigned to
clusters. It allows the Coordinator to compute the new centroid of
a cluster as the average of all client points assigned to that cluster.

To do so, we use the additive homomorphism of the encryption
scheme used in [13]. This allows the Aggregator to compute the
ciphertext of the sum of all the points, without actually learning
anything. The Aggregator forwards the aggregated ciphertext to
the Coordinator, which decrypts and divides the result by the cardi-
nality of the cluster, in order to compute the new cluster centroid.
The two phases iterate until a halting condition is reached. In our
scenario, we halt when the difference in client-cluster mapping
across two iterations, as observed by the Aggregator, is below a
given threshold.

The security of our protocol relies on the Aggregator and the
Coordinator being honest-but-curious. In particular, we do not
consider the case when the Aggregator or the Coordinator create
fake clients in order to infer the browsing history of other victim
clients. Also, we require the Aggregator and the Coordinator to be
in different administrative domains and to not collude.

In the Appendix , Sect. 10.4 of this technical report, we provide
a more detailed description of the cryptographic protocol and we
formally argue about its security.

4 DOPPELGANGER EVALUATION

We present several experiments that we conducted in order to fine-
tune the doppelganger part of our system. We start by empirically
determining which and how many domains to use in defining the
profile of a user (browsing profile vector). We devise two options
for clustering ≈ 500 Price $heriff users that donated their cleartext
history during a time window of 3 months. We compare the two
options by computing the clustering quality via silhouette scores.

The silhouette score [27] is a measure of similarity between a
single point and its own cluster compared to the other clusters.The
silhouette score gets values in the range of [−1, 1], where high
values indicate that the data points within a cluster are more similar
among each other than they are to other nearby clusters. It is
therefore a measure of the clustering quality.

For the option “Users top Domains”, we take into account the top
m domains of our user-base. For the option “Alexa Top Domains”,
we consider the topm domains from the Alexa top domains list.
For each of the two options, we varym between 50 and 200 and
present the results in Fig.8(a).

We observe that “Alexa top Domains” yields a higher silhouette
score than “User top Domain”. Also, the clustering quality drops
as the number of domains increases. We decided to use “Alexa
top Domains” and setm = 100. This is because it exhibits a good
clustering quality while it keeps a fairly large number of domains
that are sufficiently representative of the various user type profiles.
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(a) (b) (c)

Figure 8: (a) Varying browsing profile vectors and the maximum silhouette score of their clusters for 500 users. (b) A repre-

sentative example of how the silhouette score varies as a function of the number of clusters (k) for a data set of 500 users. (c)

Privacy-preserving k-means execution time for a single thread and for four parallel threads.

“User top Domains”, in some cases, captures domains that are
popular only among a few users but not visited by the majority
of the other users, thus yielding a sparser browsing profile vector.
This affects clustering since it can lead to clusters with a very small
number of users. On the other hand, “Alexa top Domains” captures
domains that are more popular across all users, thus yielding a
denser browsing profile vector and consequently a more balanced
and accurate clustering.

To determine the optimal number of clusters (k), and in turn the
number of doppelgangers, we look at how silhouette scores change
with respect to k . Our goal is to strike a balance between cluster-
ing quality and the overhead of creating and maintaining doppel-
gangers. Fig.8(b) shows that the silhouette score curve reaches up
to around 0.6 with as little as 40 clusters. Higher values of k provide
better clustering quality but also translate to higher overhead. They
can also compromise user privacy as discussed in Sect. 3.6.2. We
have repeated this experiment on aweekly basis for twomonths and
have always experienced a behavior similar to the one in Fig.8(b),
with clustering scores around 0.6 for k ∈ [40, 60]. Based on the
above observations we set an upper threshold for k to be the 10% of
the number of user independently of the silhouette score. Setting
an upper threshold for k ensures that doppleganger creation and
maintenance does not saturate our system’s resources.

Finally, Fig.8(c) depicts the execution time of the privacy-preserv-
ing k-means algorithm for a single iteration. We use a synthetic
dataset of ≈ 500 users and set m ∈ {50, 100}. On the x-axis we
have the target number of clusters (k) starting from 50 up to 200
clusters in steps of 50. The y-axis depicts the execution time in
minutes for a single iteration of the clustering process. The grey
bars represent the execution time for 50 dimensions and the blue
bars for 100 dimensions of the browsing history vector for a sin-
gle thread execution. The hashed part of each bar represents the
execution time with multiple threads running in parallel. Observ-
ing the execution time of the hashed highlighted part of each bar,
we conclude that the protocol is highly parallelizable. On average,
the privacy-preserving k-means algorithm requires between 6 to
10 iterations to converge. We can achieve further improved per-
formance by utilizing a Graphical Processing Unit (GPU) such as
nVidia Tesla [10].

The last step of the process involves the creation of the doppel-
ganger profiles based on the final centroids of each cluster. During
this step the Coordinator sends the centroid vectors to a set of
PlanetLab server nodes that can build the profiles in parallel in a
few hours. The final identifiers for each domain in each group are
then pushed back to the Aggregator server.

5 PERFORMANCE ANALYSIS

In this section we present a comparative performance analysis of
Price Detective’s implementation with the $heriff v.1 system.

To be able to quantify the overall performance improvement
of the Price Detective system over the original $heriff tool we
deploy both systems in a cloud service and automate few clients
to start sending price check requests to each version of the system.
The Table 1 presents the performance evaluation results for both
systems under different workloads.

The stress-test setup is relatively simple. We set up few web
browsers with the Selenium plugin [9] installed (Table 1 - # Clients
column) and automate a number of price check requests from dif-
ferent e-stores on each one of them. We utilize the Monitoring Web

Interface (Fig. 7) to monitor the number of pending jobs (Table 1
- # Tasks) on each server. To measure the response time (Table 1 -
Response Time Per Task) for each request, we manually monitor
the log files of the measurement servers (Table 1 - # Servers). Each
experiment starts using two client browsers to raise the workload to
the appropriate number of parallel tasks. After reaching the desired
workload only one client was sending requests. At the beginning,
we try few dry runs to be able to estimate the price check request
rate on the clients. This is needed to estimate the average response
time per task for a window of at least 15 minutes. A high price
check request rate causes the $heriff v.1 Measurement server to
crash before the 15 minute window, and a low rate was unable to
increase the workload over time.

In Table 1, the first two rows present the results from the $heriff
v.1. In the first row we have the results for one client and one server.
The overall response time is approximately two minutes per task.
Assuming a stable task rate without any spikes, we can serve up
to 3600 requests per day. The second line present the results for
the same setup but this time we increase the workload near the
critical point of 10 parallel tasks. Note that the response time now
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Table 1: System Performance Analysis

# Clients # Servers # Tasks
Response Time
Per Task (min)

Max Daily Requests

Old Version
1 1 ≈ 5 ≈ 2 3600
2 1 ≈ 10 ≈ 5 2880

New Version
1 1 ≈ 5 ≈ 1 7200
2 1 ≈ 10 ≈ 1.5 9600
3 4 ≈ 10 ≈ 1.5 38400

increases up to 5 minutes per task. The two main reasons behind
this observation are the CPU context switching and the attached
database on the measurement server (See Sect. 10.2.1).

The last three lines of Table 1 present the results from the new
version of $heriff. The first line presents the results for a single
client and a single server. Interestingly the response time per task
value, is approximately 1 minute. This result is bounded by the
proxy servers response time and not by the measurement server.
Specifically, we notice that some PlanetLab servers are sometimes
overloaded, imposing delay on our proxy servers response time.
Consequently, this delay is reflected on the overall time required
for a task to finish3. In the second line of the New Version tests, we
present the results with 10 parallel task using 2 client browsers.
The approximate response time is around 1.5 minutes. The addi-
tional 0.5 minute increase, compared to the previous test, is due
to CPU context switching of the proxy request threads. Compare
the results with the corresponding old version stress-test, we have
approximately 3.5 minutes response time reduction. This reduction
is due to the separated shared database server and the overall code
optimization (See Sect. 10.2.1).

The final line of Table 1 present the results of a large scale per-
formance test with 3 client browsers and 4 measurement servers.
By monitoring the number of pending tasks on the measurement
server and setting a safe threshold (in this test, 10 parallel tasks)
we can fire up additional servers to handle requests spikes without
compromising the response time per task. With 4 measurement
servers and a safe threshold of 10 parallel tasks the new version of
$heriff can serve up to 38400 price check requests per day.

Note that the above stress-test results are an approximation of
the overall system performance. Each component, such us, the
Coordinator, the Measurement server, the various proxy clients,
and the network state, can impose varying time delays during the
test. To avoid any server crashing on the production system, we
reduce the number of parallel tasks threshold to the two thirds of
the critical workload for each deployment. In our final production
deployment, using a different cloud service, the average response
time is approximately 30 seconds per task for the 3 client browsers
and 4 measurement servers configuration.

6 LIVE VALIDATION

Before we dive into our results, we provide some information on
our user recruitment processto bootstrap our deployment. The ini-
tial recruitment step involved uploading the browser add-on to the
corresponding website for each web browser (Mozilla Firefox and

3To overcame this problem in the production system, we set a 2 minutes upper bound
for each thread request towards a proxy server, before we kill it.

Google Chrome). Then, we leveraged the users’ curiosity about
online product pricing by spreading the word in online social net-
works. At this point we managed to get the attention of a few
journalists around the world. After the publication of a few articles
in the popular press (businessinsider.com, businessoffashion.com,
mathbabe.org, idlewords.com, incibe.es) and a TV documentary in
the Swiss national TV (RTS Un), we managed to recruit more than
1000 new users4 from all over the world.

Next, we present results from the live deployment of the Price
$heriff system. All data presented and analyzed in this section are
generated as a result of price check requests by real-world users.

6.1 Methodology

We analyze results obtained from August 2015 through Septem-
ber 2016. In total, we observed 1265 unique users from 55 coun-
tries. Table 2 depicts the top-10 countries ranked by the number of
users’ price check requests. Each price check request is tunneled
through 30 IPCs and approximately 3 PPCs. The requests involve
1994 checked domains and 4856 checked products. These requests
yielded 160248 responses. The number of users that donated brows-
ing history during this experiment is 459.

6.2 General findings

Out of the 1994 checked e-commerce sites, 76 (3.8%) were involved
in at least one price check that resulted in some difference of price
between either infrastructure proxies or peer proxies. Fig. 9 depicts
the number of requests and the observed price difference (standard
box-plots) for 29 domains where we observed price difference in at
least 10 price checks performed by users.

Fig. 9 illustrates that there are several e-commerce sites with
median measured price difference in the range of 20%-30% (e.g., dig-
italrev.com, luisaviaroma.com, overstock.com, steampowered.com,
suitsupply.com), as well as few where the median is near 40% (aber-
crombie.com, jcpenney.com). The list includes e-commerce sites
across diverse fields, including clothing, digital/electronics, travel,
bookstores, art/gallery, bicycles, etc. Table 3 depicts the extreme
observed differences in terms of relative price between cheapest
and most expensive observation point and the resulting absolute
difference in price. As can be seen, there were cases where the
measured price could differ by a factor of 2.55 between measure-
ment points (i.e., 155% more expensive). In terms of absolute price
difference, the maximum difference was e 1201. A special case that
we observed in multiple occasions is an expensive digital camera
(Phase One IQ280) from www.digitalrev.com of which the retail

4The overall number of installations is much higher but we only count users that
initiated at least one price check request.
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Table 2: Top 10 countries with the higher number of user requests

Country Spain France USA Switzerland Germany Belgium UK Netherlands Cyprus Canada
# Users 2554 917 581 387 217 161 126 96 95 92

Figure 9: Initial analysis of the live dataset created by real

users. (Top) Domains with the highest number of requests

where price difference occurred. (Bottom)Magnitude of nor-

malized price difference per domain.

Figure 10: Ratio of the maximum price over the minimum

of a product (y-axis). The x-axis depicts the products sorted

in increasing order of the minimum price. We use the live

dataset depicted in Fig 9.

price in Europe was around e 34.5k ,in Canada around e 45k , in
the US almost e 41k and in Brazil above e 46k . Thus, between the

Table 3: Extreme Observed Differences

Domain Product Description
Difference

Relative (Times) Absolute (EUR)
steampowered.com Computer Game 2.55 13.12
abercrombie.com Clothing 2.38 21.00
luisaviarome.com Clothing 2.32 502.17
luisaviarome.com Clothing 2.18 1201.00
aeropostale.com Clothing 2.16 96.12
suitsupply.com Clothing 2.08 64.00

raffaello-network.com Men’s Accesories 2.03 660.00
bookdepository.com Book rental 2.03 21.18

two extremes we have more than e 10k price difference. We manu-
ally checked that shipping and duty costs were not included in the
product prices. Similarly, excluding a single case, we checked that
VAT was always either not included or was the VAT of the location
of the seller and, thus, independent of measurement point.

For each price check that yielded some price difference, we iden-
tified the country where the maximum and the minimum price was
observed. Table 4 sorts the countries in terms of the number of
products for which they were found to be the most expensive or
the cheapest. (Note that the two lists need not be non-overlapping
as one country can be among the most expensive ones for some
products but among the cheapest ones for others.)

We also examine the price ratio between maximum and mini-
mum price observed for all measurement points in the live dataset
(Fig. 10). The highest price differences are between products costing
e 5 to e 1000 and can be up to ×2.5, thus, 150% price difference. For
products between e 1K - e 10K the price difference is as high as
×1.7. For the expensive products, in the range of e 10K to e 100K,
the maximum price difference is 30%.

6.3 Personal-data-related findings

Next we looked at e-stores that were involved in at least one price
check that returned a price difference within the same country be-
tween the requesting add-on and other PPCs or an IPC in the same
country. We found 7 such cases, the top 3 being: amazon.com (12
cases), jcpenney.com (7 cases), and chegg.com (6 cases). In the next
section, we examine these domains in more detail.

7 SYSTEMATIC MEASUREMENT STUDY

We now describe the results of our systematic large scale measure-
ment study, which focused on e-commerce sites that showed signs
of discriminatory behavior based on location or personal data.

7.1 Methodology

We used the live system’s results as a compass to direct us towards
domains from which we observed at least one request with price
variation within the same country. We selected those domains for
systematic crawling. We also included domains with price differ-
ence between different countries that fall below the ninety fifth
percentile of the total number of requests to have a better insight.
The crawling entailed generating artificial price check requests
towards the selected domains.
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Table 4: Most expensive (Top row) and cheapest countries (Bottom row) found in our dataset sorted from left to right.

Expensive

Countries
Spain USA

New
Zealand

Portugal Ireland Japan
Czech

Republic
Korea

Hong
Kong

Canada

Cheapest

Countries
USA Spain Canada Brazil Japan

Czech
Rebuplic

New
Zealand

Australia Singapore Thailand

Figure 11: Analysis of the crawled dataset created using

peers within Spain. (Top) Domains with the highest number

of requests where price difference occurred. (Bottom) Mag-

nitude of normalized price difference per domain.

To prevent the artificial price check requests from influencing
our live deployment measurements, we set up a parallel back-end
infrastructure to isolate the crawling requests from the live system
back-end. The network of PPCswas shared between the two parallel
back-ends. That is, the crawling back-end was able to distribute
requests to the same PPCs used by the live system and store the
results separately.

For the initial systematic crawling we used 24 domains and 30
products per domain. We repeated each experiment 15 times for
each of the 30 products per domain yielding 10800 requests. We
used 30 IPCs and on average 3 PPCs (these peers reside in the same
country)5 for 10800 requests, yielding 356400 responses.

After assessing the results collected by the systematic crawling
alongside the ones from the live system, we look at domains with
suspicious price variations between users within the same county,
i.e., amazon.com, jcpenney.com, and chegg.com.We consider a price
variation to be suspicious if it appears at least 10 times. For each

5The number of PPCs depends on the availability of the real users during the request.
The maximum number of PPCs per request was 5.

of these 3 domains we create a set of 25 representative products
covering multiple distinct categories and all product price ranges
(cheap and expensive ones).

As is the case with the above setup, we repeated each experiment
15 times for 25 products from each of the 3 domains. This time we
repeated the experiment with the PPCs residing in a new country.
We selected 4 European countries (Spain, France, Germany and
United Kingdom)6 resulting to a total of 4500 requests. The 15
experiment repetitions took place in varying times of the day in an
attempt to maximize the number of different PPCs used. In the end,
from the 30 IPCs plus 3 PPCs we obtained 33 × 4500 measurement
points.

Crawling setup details: To perform the systematic measure-
ment, we use the Mozilla Firefox browser with the iMacros automa-
tion add-on installed alongside our custom version of the $heriff
add-on. To make our crawling look and behave like a real user so
that we evade bot detection and blocking, we created a custom
Python driver around Firefox that was able to dynamically create
iMacros scripts and load them to the browser. The Python driver
injected random delays between requests to mimic a normal human
behavior during crawling. Every 4 price check requests, the Python
driver reset the Firefox browser to its default state (clean profile)
and restarted the process for the rest of the products.

7.2 Analysis on price variation

Figure 11 confirms the results of the live study depicted in Fig. 9. As
can be seen, there are e-commerce sites where the maximum price
was more than ×4 higher than the minimum price (e.g., anntay-
lor.com, steampowered.com, and abercrombie.com). Turning to the
three e-commerce sites where we observed price difference within
the same country, we observe that such differences appear also in
our systematic crawling study as shown in Table 5. In all four coun-
tries, jcpenney.com has the maximum percentage of requests with
price variations between 35 to 70% of the minimum price, followed
by chegg.com with the maximum percentage observed in Spain
being almost 40%. Finally amazon.com has the lower percentage in
all four countries which is below 14%. We investigate each domain
in more detail in the next section.

We now compare our results with those in [24]. From the list
of reported domains that exhibit price variations, 22.2% were no
longer valid, 11.1% of them stopped offering different prices to dif-
ferent locations, 22.2% redirect users to a different URL according to
the customer location, and for 44.4% of them we observe that they
are still serving different prices across countries. Surprisingly, for
those domains we observe that the median price variation across
countries is approximately the same (e.g.luisaviaroma.com - 1.15%,

6We intentionally select only European countries to avoid taxation variations be-
tween regions within the same country. For more information see “Council Directive
2006/112/EC”, which is available at http://eur-lex.europa.eu/eli/dir/2006/112/oj
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Figure 12: Results per country for the three domains where

we detect price variations for users within the same country.

Table 5: Percentage of requests with price difference

Spain France United Kingdom Germany
chegg.com 38.98% 0.0% 15.44% 2.45%

jcpenney.com 58.62% 67.26% 57.87% 34.72%
amazon.com 6.84% 13.27% 8.79% 7.50%

tuscanyleather.it - 1.12%, abercrombie.com - 1.53%). Some excep-
tions are overstock.comwith a 30% decrease (1.48% reported by [24]
vs.1.18% in this work) and digitalrev.com with a 6% increase (1.16%
reported by [24] vs.1.22% in this work).

7.3 Case studies in four countries

For each one of the three e-retailers where we observed price differ-
ences within the same country during the live validation phase, we
generated ∼ 300 artificial requests for its products and re-routed
them through PPC and IPC clients (if one exists in the country). We
repeated the experiment for four European countries and depict
the results in Fig. 12. Each plot reports on a single retailer within a
given country. Each point of a plot refers to a single product: the
x-axis indicates the minimum price observed by either a PPC or
an IPC. The y-axis indicates the maximum relative price difference
between any pair of measurement points, either PPC or IPC, for
the given product in the same country.

The total number of results varies based on the number of avail-
able IPCs and PPCs within the country. It can be seen that in Spain
we have the higher number of results because we have three IPCs
located in Spain and the higher number of PPCs. The results clearly
indicate the existence of price differences between measurement
points even within the same country. The magnitude of difference
however is noticeably smaller than that across measurement points
in different countries.

In the case of chegg.com, for Spain, the UK, and Germany, we
observe a 3% to 7% price difference between distinct PPCs in the
same country. Differences exist for products across a range of prices
between e 10 and e 100, which are typical prices for textbooks car-
ried by the site. The resulting maximum relative price difference
between minimum and maximum measured price is almost uni-
formly spread between 3% and 7% of the minimum price. In the
case of jcpenney.com, price differences within the same country
are below 2% in Spain, France, and Germany, and exactly 7% in

UK. In the case of amazon.com we observe higher differences in all
four countries but they are concentrated on a small set of discrete
values, namely 21%, 27%, 19% and 7%. These values match almost
perfectly the VAT scales within each one of the four countries.
Discussion. In the previous four case studies we wanted to inves-
tigate in detail why we were seeing price differences, consequently
we did not use doppelgangers. We did verify, however, that the
number of peer requests for any individual PPC were small. In the
case of amazon.com, the results seem to indicate that amazon.com is
applying the corresponding country VAT based on the category of
each product in the country where the user resides. Due to its high
penetration, it is likely that several of our PPC users were already
logged in with their amazon accounts and thus the prices they were
shown included their national tax for the corresponding category.
This naturally creates a price difference compared to showing only
the base price without tax when one is not sure about the exact
delivery address (e.g., in the case of a guest user that is not logged
in to the store).

In the case of jcpenney.com, price differences are smaller. De-
pending on the country, they may be scattered across multiple (e.g.,
Spain) or few values (France:2, UK:1, Germany:1). We did not detect
a connection between these difference and the VAT rates in the
said countries. The case of the UK is of particular interest since the
price difference seen by different users is not trivial (7%), especially
if one takes into consideration that profit margins for each one
of these products is typically a small fraction of the actual price
of a product. Similar observations apply to chegg.com, where the
observed differences are more scattered than in jcpenney.com.

7.4 Testing for bias towards higher or lower
prices

In Fig. 13 we focus on jcpenney.com. We plot for each of the PPC
users in France (left) and UK (right) the relative price difference
with respect to the cheapest PPC user in the same country for the
same product, across all the checked products. Each point in the
box-plot represents a single PPC user. The number of measurements
points that we have for each user is depicted at the labels of the
x-axis.The y-axis depicts the range of price differences observed
by the same user during the experiment alongside the median
difference highlighted in red. This figure is a more detailed view
of the corresponding subplots of Fig. 12 where we depicted only
maximum price differences.

We can see that the relative differences in France are small (<2%),
which is consistent with the earlier presented results. In addition,
we can observe that French users obtain both low and high prices in
an almost uniform fashion, which does not indicate any clear trend
towards high or low values for any of the users. Having excluded
all other possible explanations we conclude that the observed price
variations are likely to be due to A/B testing that randomly increases
or decreases the price by small amounts to gauge how users react.In
the right part of Fig. 13 we see that price differences in the UK are
higher (∼ 7%). Interestingly, certain peers tend to receive consis-
tently low (first 8 peers) or high (last 2 peers) prices. We attempted
to further study the causes of this behavior with respect to those
10 peers. Unfortunately, out of the peers implicated in these results,
only few had donated third party tracking cookies and browsing
history. We also attempted a regression analysis based on the 400+



SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA C. Iordanou et al.

Figure 13: Per peer proxy price difference distribution within the same country. Left: France. Right: UK.

other peers that had donated such data, but the great majority of
them were not involved in instances of price variation within the
same country.

7.5 Testing for A/B testing and pricing tricks

In this section, we attempt to confirm that the observed price vari-
ations are not personal-data-driven, but are instead A/B-testing-
or time-driven. To this end, we set up a number of PPCs with an
empty profile (no browsing history), operated by us in Spain, and
a set of user agents mimicking all possible combinations of popu-
lar operating systems and browsers using the phantomJS headless
browser [2]. The combinations include Windows 7, Mac OSX and
Linux, as well as Google Chrome, Mozilla Firefox and Safari. We
use combinations of varying user agents to examine if there is any
bias of specific browsers and operating systems towards high prices.
For each domain, we randomly selected 30 products. We repeated
the experiment for 20 days7 requesting prices twice a day.

Figure 14 and Fig. 15 depict the price of 5 products from jcpen-
ney.com and chegg.com, respectively over time. For improved read-
ability, we selected 5 representative products out of 30 for each
temporal trend we observed in each dataset. The jcpenney.com
e-retailer has a diverse inventory of products including clothing,
cosmetics, jewelry and household products. We select random prod-
ucts from each of the aforementioned categories during all our
experiments. Each box in the figure corresponds to a single prod-
uct. Observing Fig. 14 from left to right, the first plot corresponds
to a refrigerator, the second and third plot to a cosmetic product
(Whipped Mud Mask) and a man shaving cream, respectively. The
forth plot corresponds to a furniture product (3-seeds living room
sofa). Finally, the last plot corresponds to a leather bag. For each
day of the experiment (x-axis) we plot the box-plot for all prices
observed from each measurement point during that day (y-axis).
We annotate every plot with the regression line based on the high-
est price we observe each day to illustrate the overall price trend
(either increasing or decreasing) over time.

Focusing on jcpenney.com and taking This is significantly less
than what we observed with jcpenney.com’s products. On the other
hand, the daily price fluctuation is on average 8.3%, which is 4.6%
higher than jcpenney.com. The overall price trend for all 30 products
is very similar to the five plots depicted in Fig. 15. Over consecutive
days the price is slowly drifting upwards or downwards. Abrupt

7We present results for 20 days although the experiment was running for 30 days
because some products started running out of stock.

price changes are rare and at a much smaller scale compared to
jcpenney.com’s trend.

We now turn our focus on the actual price variation over time.
Based on the regression line of each product we estimate a measure
of the overall price difference between the first and the last day for
all products of each e-store. For jcpenney.com and chegg.com, if we
assume that all products we crawled are sold once, we compute an
overall e 452 and e 225 revenue increase, respectively. We tend to
believe that this trend of increasing prices is not entirely random.
If popular products drift towards higher prices, this may lead to an
overall profit increase for the retailer.

We contemplate whether our experiments can influence the
product prices. During our measurements we artificially increase
the number of visits towards the selected products. An increase
in the number of visits may be interpreted by the e-retailers as
an increase in demand. Thus it can result in the selected products
becoming more expensive. Nevertheless, by analyzing our results
we observe that prices become both more and less expensive after
successive observations. In addition, consumers typically surf the
retailers’ inventory jumping between products before doing an
actual purchase. Thus, we expect that our measurements introduce
a negligible amount of additional visits per product. Furthermore,
the number of sales is a substantially more influential signal for
pricing compared to the number of visits. The above lead us to the
conclusion that the additional visits during our experiments have
not influenced the products price over time.

Since in this series of measurements all our PPCs had a clean
browsing history, we expected to observe similar prices among
them. Indeed, by analyzing the prices for each PPC for each day
we do not observe any correlation towards higher or lower prices,
similar to Fig. 13. By plotting the cumulative distribution function
(CDF) for each PPC and IPC for both experiments in Sect.7.4 and
Sect.7.5, we observe an almost equal probability (around 50%) for
higher or lower price among all the measurement points. We run
a pairwise comparison between all CDFs using the Kolmogorov-

Smirnov test (K-S test) to examine if the results seen by all of our
measurement points (IPCs and PPCs) are drawn from the same
distribution. Indeed, the lower D value we observe is 0.3 with all
comparisons p-values above 0.55. Hence, we conclude that differ-
ent prices are randomly presented to our PPCs and IPCs with an
approximately 50% probability to observe a higher price, which
indicates A/B testing.
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Figure 14: Temporal trends observed for jcpenney.com products.

Figure 15: Temporal trends observed for chegg.com products.

Next we attempt to correlate price differences with the type of
operating system and browser. Additional features are also intro-
duced, i.e., the time of the day split into quarters and the day of
the week. Using linear and multi-linear regression models, we com-
bine the various features but we find no correlation. Our best fit
multi-linear regression has an R-Square value equal to 0.431 with
all features having p-values greater than 0.05. Next, we perform
Random Forests to confirm our conclusions. It turns out that the
value of the feature importance factor and the ROC is low with no
statistical significance for all the features we tried.

Considering the aforementioned results, we reach the conclusion
that the two e-retailers under examination do not use personal
information to alter their product prices. It is likely that they utilize a
combination of A/B testing and a temporal tuning of their products’
prices based on some internal process unknown to us.

7.6 Alexa top-400 e-retailers
Our systematic study has so far been limited to 24 domains in which
the live study with real users showed signs of price variation (out
of the 1994 domains checked by real users in total). Of those 24 do-
mains, only 3 had price differences within the same country, which
in the end we attribute to A/B testing. To answer whether there
might exist other domains exhibiting price differences within the
same country we examined the top-400 most popular e-commerce
sites according to Alexa. For each of these web-sites, we randomly
selected 5 products and checked them for 3 consecutive days using
the PPCs of Spain. With the exception of the 3 domains already
reported, we did not find any additional domains having price
differences within the same country.

8 RELATEDWORK

The work that is most closely related to ours is the one by Mikians
et al. [23, 24]. In [23], they presented the first evidence of online
price discrimination using a distributed system that created syn-
thetic requests to examine a handful of popular e-commerce sites
from Alexa. In their subsequent (short) paper, they presented initial
measurements from a crowdsourced study using the first version of
the $heriff add-on for Firefox. Our work with the Price $heriff goes

beyond [24] in several important dimensions: a) we develop the
first of its kind peer-to-peer measurement system that is capable
of privacy-preserving PDI-PD detection, thereby extending [24],
which could detect only location-based PD using dedicated servers;
b) we present a full system design and implementation addressing
important challenges (see Sect. 2) that are not discussed, e.g., scala-
bility, or even faced by [24], e.g., how to tunnel requests through
peers in a way that uses their context (history, cookies) without
“tainting” it locally or at the server-side, while maintaining user pri-
vacy; and c) we present an order of magnitude larger measurement
study that, among others, aims to uncover evidence of PDI-PD.

Comparing our results with the work in [24], we observe similar
price variation based on location in the domains examined by both
this and their work, with only a few exceptions. In addition, our
tool was able to examine more than 1900 e-commerce domains
as opposed to only 600 domains examined in [24], revealing 76
domains that exhibit evidence of location based PD. On the other
hand, the measurements in [24] revealed only 20 domains.

Hannak et. al. [20] have followed upon the work of Mikians
et al., presenting additional evidence that online PD exists on the
web. They developed a research prototype that targets specific pre-
selected web pages with a barrage of price comparison tests that
were conducted with the help of users recruited through Amazon’s
Mechanical Turk [1]. The authors manage to extract some user
features suspected of triggering discrimination by using artificially
created personas with different characteristics. The Price $heriff,
like [20], uses crowdsourcing, but enables the users to check arbi-
trary rather than predefined web-sites and products.

We also attempted to compare our results with the results re-
ported by Hannak et al. [20]. The only domains examined by both us
and Hannak et al. were jcpenney.com and macys.com. The authors
did not further investigate those two domains due to their observed
price differences being below their 0.5% threshold. Therefore we
cannot compare with those results.

Vissers et al. [29] have crawled the prices of 25 airlines for a
period of 3 weeks looking for signs of on-line price discrimination.
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Their approach is domain-specific and has relied upon simulat-
ing (playing back) real users profiles. Despite the large number of
anecdotal reports about price discrimination in airline pricing, the
authors could not confirm it for this category of product.

In the economics literature, there is a large body of work on
online price discrimination but it is mostly theoretical with little
empirical validation. In a recent study, Sinkinson and Seim [28] used
empirical data to look into mixed pricing strategies by large office
supply chains in the US. Their measurements confirm the existence
of location-based discriminatory practices. They also reveal that
such strategies are often “mixed”, i.e., with a level of randomisation,
which is also confirmed by our measurements in Sect. 7.4.

9 CONCLUSION

The Price $heriff is a first-of-its-kind application designed from the
ground up to help users detect instances of price discrimination
on the Internet. In this paper we have attempted to communicate
the difficult challenges involved in the development of such a sys-
tem. To the best of our knowledge, the Price $heriff is the first
distributed system for observing the content of web pages from
multiple vantage points to detect differentiation based on loca-
tion and personal data. To address this challenge, we designed and
implemented novel concepts, such as a hybrid infrastructure/P2P
architecture for comparing e-store prices, profile pollution preven-
tion, and privacy-preserving profile sharing for the creation of
doppelganger profiles via a k-means computation cryptographic
protocol. We envision that our architectural and implementation
choices will inform the design of future crowdsourced services for
tackling various types of discrimination. Having completed the
development phase of the project, our future work will primarily
focus on expanding our user base, collecting more data from real
users, and analyzing them in greater detail in order to understand
whether personal-data induced price discrimination is taking place
anywhere on the Web. Our findings of price variation within the
same country and the constant bias of some peers towards higher
or lower prices leaves such a possibility open.
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10 APPENDIX

10.1 Supplement to Sect. 2

$heriff satisfies the following requirements:

• It is user-friendly. The user can get price results after a few
simple to understand mouse clicks.

• Generic product price extraction algorithm that works on a
large number of e-stores.

• Location-based price monitoring. The tool is able to collect
prices from distinct locations worldwide.

$heriff does not fulfill the following important requirements satis-
fied by Price Detective:

• Its single Measurement server architecture causes scalability
concerns.

• It is not able to fetch product prices from other real users
within the same city or country (while preventing peer state
pollution and preserving privacy), making it unsuitable for
detection of PDI-PD based on client-state or fingerprinting.
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• It is not able to collect the browsing history from the users,
rendering it unable to detect PDI-PD based on the sites the
user has visited.

• The product prices are shown in different currencies in the
result page. Hence the user faces difficulty in observing price
differences.

10.2 Supplement to Sect. 3.1

10.2.1 Measurement server. After the initial analysis of the base
system, we realized that themeasurement server was the bottleneck,
introducing long response times during demand spikes for price
checks. A single measurement server was responsible to process all
incoming requests, to distribute a number of jobs to available proxy
servers, to record the proxy servers’ results to the database and
replies back the results to the user. To overcome the scalability issue,
and make the system more responsive, we managed to slim down
the Measurement server by removing functionality and assigning it
to the Coordinator and Database server. We removed the integrated
database from the Measurement server and we host it on a separate
Database server, shared between multiple measurement servers.
Furthermore, we optimized existing parts of the code to reduce
the overall response time while allowing the price check request
distribution protocol to operate smoothly.

By offloading some of the system’s functionalities (request han-
dling and data storage) to the Coordination and the Database server,
we ensure that the Measurement server’s CPU and memory foot-
print is kept small. Measurement servers can be added and removed
from the system dynamically depending on workload and main-
tenance needs. The process for attaching and detaching machines
to and from the system is simple for the system’s administrator
who uses an intuitive web interface. First, one needs to setup a
new Measurement server 8. Then, she needs to register it with the
system by using the Coordinator’s web interface. The Coordinator
executes some internal tests to confirm that the new machine is
actually running the Measurement server code. If the new machine
passes the tests, the Coordinator includes it in the request distribu-
tion protocol and starts using it to serve price check requests. To
remove a Measurement server, one can use the same web interface.
As soon as the selected Measurement server has no pending jobs,
it can be removed from the system.

For the dedicated centralized database, we tweak the configu-
ration file to increase the number of connection threads and keep
them in memory. This optimization minimizes the time required to
create a new connection to the database. Furthermore, by keeping
the connections in memory, we managed to minimize the data-
base response time during multiple sequential connection requests
from multiple measurement servers. During a price check request,
the delay for a proxy client’s response depends on the overall sys-
tem workload, Internet connection speed or requested web page
size. Thus, multiple connections need to be utilized simultaneously
during workload spikes for a relatively large time window of ap-
proximately one minute.

Another optimization is the use of stored procedure calls. Stored
procedures can be used to optimize frequently used queries and

8Source code and installation scripts are currently available for Ubuntu Linux 12.04
LTS

Peer ID IP Country Region City Select

SQN9cSHiZA7o_1 195.235.92.38 Spain Catalonia Barcelona

N6esch7nbxdk 81.38.218.228 Spain Catalonia Barcelona

om0V6hjHBj7x_3 195.235.92.38 Spain Catalonia Barcelona

SQN9cSHiZA7o_12 195.235.92.38 Spain Catalonia Barcelona

SQN9cSHiZA7o_10 195.235.92.38 Spain Catalonia Barcelona

costasWorker 81.38.218.228 Spain Catalonia Barcelona SELF

Figure 16: The Price Detective peer proxy monitoring panel.

For each online peerwe canmonitor the IP, Country, Region

and City, in real time.

minimize the data transfer between the measurement servers and
the database. At the operating system (OS) level, since the server
was only hosting the database, we also tweaked the OS to assign
more hardware resources toMySQL process, such as, memory space
and CPU time.

10.2.2 Network of Peer Proxy Clients. Within the Price Detective
add-on, we use the peerjs [6] webRTC library to directly connect
with the add-on peers.We also developed a communication protocol
on top of webRTC that enables the exchange of different instruction
messages between the peers and the Measurement Servers. Each
peer client has a unique ID, which the systems uses to track it.

The Coordinator monitors the number of available peers in real
time with a low overhead. We have implemented a web interface
that retrieves pertinent information from the Coordination server
such as the number of available peer proxies along with their IP,
peer ID, country and city. A screen shot of the web interface is
presented in Fig. 16.

10.3 Supplement to Sect. 3.4

Below we provide a short explanation of the key fields located at
the bottom of Fig. 6:
Time-stamp: Each Measurement server sends heartbeat messages
to the Coordinator. When the coordinator server receives a heart-
beat message, it updates the time-stamp field of the corresponding
measurement server. Absence of heartbeat messages for a specified
time threshold results in the Measurement server being marked as
offline.
Jobs: The jobs field is a simple counter that holds the number of
jobs that each measurement server processes at any given time.
The Coordinator uses this field to choose a measurement server to
assign a new price check request.
URL, Port: The Coordinator forwards these two fields to the browser
add-on after the coordinator server selects a measurement server
to process the incoming request.

For the price check request distribution protocol, during step 4,
the Measurement server responds back to the Coordinator using
the unique job ID to inform it that the specific request has been
completed, so that the Coordinator decreases the corresponding job
counter. For step 4, we also consider the case when the Coordinator
is not informed of the job completion due to network issues. Ap-
propriate corrective measures are put in place to handle this case.
Furthermore, the information kept at the Coordinator facilitated
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Figure 17: Interaction between a client, the aggregator, and

the server to compute the distance between two points.

the implementation of a real-time web interface for monitoring and
managing the system.

10.4 Supplement to Sect. 3.8

System setup generates the description of a multiplicative group
G of order q where Decisional Diffie-Hellman is hard, and a gen-
erator д of G. Key generation outputs an m-dimensional vector
of secret keys x = (xi )i ∈[m] and a vector of corresponding pub-
lic keys h = (hi )i ∈[m] where hi = дxi . Encryption of vector
c = (ci )i ∈[m] under public key h is denoted by Ench(c) and outputs
α = дr , (βi = h

r
i д

ci )i ∈[m] for random r in Z ∗
p . (Note that operations

are Decx(α , (βi )i ∈[m]) and outputs (γi )i ∈[m] where γi = βi/α
xi .

Note that because encryption is at the exponent, recovering the
original plaintext requires computing the discrete logarithm of γi
in base p — this operation is feasible if the range of admissible
cleartexts is small.

The holder of the private keys can compute and outsource the
function key f =

∑
i=1,m xisi for a (private) vector s = (s1)i ∈[m].

Given an encryption of c as α = дr , (βi = hri д
ci )i ∈[m], the holder

of the function key can evaluate the dot-product between c and
s by computing γ =

∏
i=1,m βsii /α f and then finding the discrete

logarithm of γ in base p. Note that computation of the predicate
does not require knowing c, but only an encryption of c under
public key vector h.

10.4.1 Distance computation and client-cluster mapping. At sys-
tem setup, the Coordinator generates parametersG,q,д as described
above, picks t =m + 2 private keys x = (xi )i ∈[t ] and publishes the
corresponding public keys h = (hi )i ∈[t ] where hi = д

xi .
The client uses its private point a = (ai )i ∈[m] to compute c =

∑
i=[m] a

2
i , 1,a1, . . . ,am , encrypts c as α , (βi )i ∈[t ] = Ench(c), sends

the ciphertext to the Aggregator, and goes offline.
The online part of the protocol to privately compute the distance

between an encrypted client point and a cluster centroid is depicted
in Fig. 17. In particular, the Aggregator acts as the client of [13] and
uses the encrypted client point as its private input; the Coordinator

Aggregator Server
(αj , (βi )i∈[m])j∈[n] x

ρ =
∏

j=[n]
cj,0

For i ∈ [3, t ]
ϱi =

∏

j∈[n]
cj,i

ρ, (ϱi )i∈[3,t ]
��

w = Decx(n, ρ, (ϱi )i∈[3,t ])
For i ∈ [1,m − 2]
si = DL(wi /n, p)

Figure 18: Centroid update. Note that decryption at the

server only uses the private keys at positions in [3,m].

acts as the server of [13] and uses a cluster centroid b as its private
input.

The protocol of Fig. 17 must be repeated for each of the k cluster
centroid held by the Coordinator. (All k instances could run in
parallel.) At the end of thek runs, the Aggregator learns the distance
between all centroids and c, so it can assign the client to the correct
cluster. The Aggregator, however, does not learn the actual point c,
nor it learns the cluster centroids.

10.4.2 Cluster center update. The protocol that allows the Coor-
dinator to update a cluster centroid is depicted in Fig. 18. Let n be
the number of clients assigned to a given cluster. We now slightly
update the notation and use subscript j to denote a specific client.
For example, α j , (βi, j )i ∈[t ] is the encrypted point of client j . The Ag-
gregator aggregates dimension-wise all the encrypted client points
that belong to the cluster. In particular, aggregation is only needed
for elements at positions in [3, t] since the first two dimensions are
artificially added and do not reflect the browsing history of a client.
The aggregated ciphertext is forwarded to the Coordiantor along
with the cluster cardinality. The Coordiantor simply decrypts to
learn the (dimension-wise) sum of all points, divides each sum by
the cluster cardinality, and computes the discrete logarithm to get
the new cluster centroid.

10.4.3 Security Analysis. The security of the above protocols
stems from the security of [13] and the one of the ElGamal en-
cryption scheme. For the protocol of Fig. 17, the Aggregator learns
the distances between a client’s point and k centroids belonging
to the Coordinator. The Aggregator, however, does not learn any
of those points. Furthermore an encrypted client point cannot be
decrypted as long as the Coordinator and the Aggregator do not col-
lude. The security of the protocol in Fig. 18 relies on the security of
the ElGamal encryption scheme. The Aggregator simply aggregates
ciphertexts while the Coordinator only learns the dimension-wise
sum and the cardinality of the cluster.

10.5 Implementation

Browser add-on. The add-on implementation consists of 5 mod-
ules: a) the Viewmodule, which is responsible for all visual elements
and user preferences; b) the Collector module, which is responsi-
ble to detect third party domains, create the HTML tag graph and
handle the price request between the user, the Coordinator and
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the Measurement server; c) the Peer handler module, which im-
plements the P2P communication protocol using webRTC [12]; d)
4. the Sandbox module that handles the incoming remote URL re-
quests, installs doppelgangers, and cleans up the user’s profile; and
e) the Controller module, which manages the interaction between
all modules. The browser add-on is implemented using standard
web development languages and established third party libraries,
such as peerjs [6]. The Chrome and the Firefox add-ons are written
in 1800+ and 2300+ LoC, respectively.
Coordinator. This component consists of: a) three monitoring sub-
systems for the Measurement servers, the PPCs, and the dedicated
doppelganger clients; b) the request distribution protocol to bal-
ance the load among the Measurement servers; c) the network of
PPCs coordination and contact information distribution protocol;
and d) the doppelganger creation and management subsystem. It
was implemented using PHP, HTML/CSS, JavaScript, Python and
nodejs. It is written in 5100 LoC.
Measurement server. The Measurement server comprises five
modules: a) the Currency Detection and Conversion module; b)
the DiffStorage module to minimize the size of HTML code we
store in the RDBMS by saving the full HTML page code reported
by the user’s add-on and just saving the difference for the HTML
code responses from the IPCs and PPCs; c) the PhantomJS wrapper
module, which handles the requests to the IPCs; d) The Tag Graph
module, which extracts the price from the HTML code; and e) the
PDSystem module, which coordinates all the interaction between
the modules and serves the results to the user. It is implemented in
7400+ LoC of HTML/CSS, PHP and Python.


