
Class-based Prediction Errors to Detect Hate Speech with
Out-of-vocabulary Words

Joan Serrà
Telefónica Research,

Barcelona, Spain

Ilias Leontiadis
Telefónica Research,

Barcelona, Spain

Dimitris Spathis
Aristotle University,
Thessaloniki, Greece

Gianluca Stringhini
University College London,

United Kingdom

Jeremy Blackburn
Telefónica Research,

Barcelona, Spain

Athena Vakali
Aristotle University,
Thessaloniki, Greece

Abstract

Common approaches to text categoriza-
tion essentially rely either on n-gram
counts or on word embeddings. This
presents important difficulties in highly
dynamic or quickly-interacting environ-
ments, where the appearance of new words
and/or varied misspellings is the norm.
A paradigmatic example of this situation
is abusive online behavior, with social
networks and media platforms struggling
to effectively combat uncommon or non-
blacklisted hate words. To better deal with
these issues in those fast-paced environ-
ments, we propose using the error signal
of class-based language models as input
to text classification algorithms. In partic-
ular, we train a next-character prediction
model for any given class, and then ex-
ploit the error of such class-based models
to inform a neural network classifier. This
way, we shift from the ability to describe
seen documents to the ability to predict
unseen content. Preliminary studies us-
ing out-of-vocabulary splits from abusive
tweet data show promising results, out-
performing competitive text categorization
strategies by 4–11%.

1 Introduction

The first steps in automatic text categorization
rely on the description of the document con-
tent. Typically, such content is characterized
by some sort of word, stem, and/or n-gram
counts (e.g. Wang and Manning, 2012) or, more
recently, by unsupervised or semi-supervised

word/sentence/paragraph embeddings (e.g. Arora
et al., 2017). While the common pipeline per-
forms well for a myriad of tasks, there are a num-
ber of situations where a large ratio of seen vs. un-
seen tokens threatens the performance of the clas-
sifier. This is the case, for instance, with abusive
language in online user content or microblogging
sites (Nobata et al., 2016; Mehdad and Tetreault,
2016). In such cases, the volume of annotated data
is not massive, and the vocabulary changes rapidly
and non-consistently across sites and user commu-
nities. Sometimes these changes and inconsisten-
cies are intentional, so as to hide the real meaning
from traditional automatic detectors using hate-
word dictionaries or blacklists. For example, the
notorious online community 4chan launched “Op-
eration Google”, which aimed to replace racial
slurs on social media with the names of prominent
tech companies in a sort of adversarial attack on
Google’s Jigsaw project (Hine et al., 2017).

To avoid relying on specific tokens, existing
text classification approaches can incorporate so-
called linguistic features (Brody and Diakopoulos,
2011), such as number of tokens, length of to-
kens, number of punctuations, and so on, or syn-
tactic features (Nobata et al., 2016), based on part-
of-speech tags, dependency relations, and sen-
tence structure. Distributional representations (Le
and Mikolov, 2014) and recurrent neural network
(RNN) language models (Mikolov, 2012) are also
used, together with more classical approaches in-
volving word or character n-grams (Wang and
Manning, 2012).

The task of automatic hate speech detection is
usually framed as a supervised learning problem.
Surface-level features like bag-of-words and em-
beddings systematically produce reasonable clas-



sification results (Chen et al., 2012; Nobata et al.,
2016). Character-level approaches perform bet-
ter than token-level ones, since the rare spelling
variations of slang and swear words will result
in unknown tokens (Mehdad and Tetreault, 2016).
More complex features like dependency-parse
information or specific linguistic attributes like
politeness-imperatives have been effective (Chen
et al., 2012). Also lexical resources like lists of
slurs, are proven effective but only in combination
with other features (Schmidt and Wiegand, 2017).

2 Proposed approach

We propose to perform text categorization fol-
lowing a two step approach (Fig. 1). Firstly, a
language model for next-character prediction is
trained with the data corresponding to each sin-
gle category. Secondly, we use a normalized, se-
quential measurement of the performance of those
language models as input to a neural network clas-
sifier. In a sense, we aim to shift from ‘what is
said’ (ability to describe) to ‘the way of saying’
(ability to predict). The idea is that the language
model should be tailored to a given category, but
without developing a strong dependence on partic-
ular characters that are frequent or representative
for that category.

The concept of class-based errors is reminis-
cent of universal background models in speaker
verification (Reynolds et al., 2000) and a few
document attribution strategies in information re-
trieval (Serrà et al., 2012). Using error signals for
classification also relates to derivative-based simi-
larity and classification in time series (Keogh and
Pazzani, 2001).

2.1 Class-conditioned language model

For the class-conditioned language model we use
a character-based RNN. Sequences of one-hot en-
coded characters X are passed through a time-
distributed dense layer with parametric rectified
linear unit (PReLU) activation (He et al., 2015),
which form a preliminary embedding. This is
shared with the subsequent layers. The intuition
behind using a PReLU activation after the embed-
ding stems from the fact that it can only improve
the results or, at worst, be automatically bypassed:
if a linear transformation (no activation) is really
the best option, the model can still learn it (He
et al., 2015).

For each class i, one gated recurrent unit (GRU;

Cho et al., 2014) is used, followed by a time-
distributed dense layer with softmax output, yield-
ing the next-character prediction sequence X̂(i)

.
With that and the delayed version of X, we cal-
culate a class-conditioned error sequence e(i) for
each character (and zero-mask it according to the
sequence length, if needed). In our experiments
with one-hot encoded character inputs, e(i) corre-
sponds to categorical cross-entropy. The final loss
is taken to be

L
(
y, e(1), . . . e(c)

)
=

c∑
i=1

1{i}(y)

n− 1

n−1∑
j=1

e
(i)
j

 ,

where y is the class label of the instance, c is the
total number of classes, n is the sequence length
of the instance, and 1() is an indicator function.

2.2 Normalization

To perform classification, we take the class-
conditioned error sequences e(i) provided by the
language model, and concatenate them into a ma-
trix E = [e(1), . . . e(c)] for each instance. We then
use an instance normalization layer

Ē = σ (gE/µ) ,

where σ() is an activation function, g is a gain
constant, and µ is the average over all the el-
ements of E (taking sequence masking into ac-
count). In principle, we could learn g (or extended
vector/matrix versions of it) and use any activa-
tion. However, we empirically found g = 1/3
and a sigmoid activation to work well enough with
character-based cross-entropy sequences.

2.3 Classification

After computing Ē, we input it to a two-layer neu-
ral network with PReLU activations, dropout (Sri-
vastava et al., 2014), and a softmax output. This
architecture decision is motivated by the fact that
we need at least one layer of an another neural net-
work to form the binary classification, since af-
ter the language model we have as many errors as
characters. A second layer is added to allow the
model to perform nonlinear classification based on
the error sequences. Regarding normalization, our
initial experiments involved no normalization and
the performance was much poorer, to the level of
the considered alternatives or slightly below.



x

M
as

k,
 C

o
n

ca
te

n
at

e 
&

 N
o

rm
al

iz
e

Class 1 
Language Model -

Class 2 
Language Model -

Class ... 
Language Model -

Other Classifiers or Layers

Other Classifiers or Layers ŷ

x

e E

Figure 1: General schema of the proposed model. First, a language model for next-character prediction is
trained with the data corresponding to each single class. Second, a normalized, sequential measurement
of the performance of those language models is fed as input to a neural network classifier.

2.4 Model setup

We train our models using Adam gradient de-
scent (Kingma and Ba, 2015) until we do not see
an improvement on the validation set for 4 epochs.
For the language model, we use layer dimension-
alities 250 (embedding) and 500 (GRU). For the
classification model, we use a dropout of 0.5 and
dimensionality 100. At classification time, the lan-
guage model’s weights remain frozen. To imple-
ment our models we used Keras (Chollet, 2015)
with Theano (Theano Development Team, 2016).

3 Evaluation data

To evaluate the suitability of the proposed con-
cepts, we choose the task of detecting abusive
tweets with out-of-vocabulary (OOV) words, us-
ing a sample of 2 million tweets from the Twitter
1% feed. Half of the sample is selected based on
their use of ‘hate words’ from a crowdsourced dic-
tionary1, while the other half is selected randomly.
We manually filter the dictionary to remove overly
common and ambiguous words like “india”, a lo-
calized slur for dark skinned people.

Due to lack of baselines and datasets that take
into account OOV words, we create semi-synthetic
splits with OOV words, in order to simulate data
with new or heavily misspelled tokens. We ran-
domly perform 10 train/validation/test splits, com-
pute the area under the receiver operating char-
acteristic curve (AUC), and report the mean and
standard deviation over the 10 test splits. Two se-
tups are considered:

1http://hatebase.org

• Easy – For the positive class, we take the
hate-word list and split it into 70% for train-
ing and 15% for validation and testing. In
performing such split, we force words with
the same stem to end up in the same split. We
then select tweets from the entire corpus that
contain at least one stemmed word from each
split. For the negative class, we just select
randomly from the remaining tweets until we
have balanced train/validation/test sets.

• Hard – Besides the list of hate words,
we also consider a list of common words
(top 1,000 to 3,000 most frequent English
words2). We proceed as with the positive
class of the Easy setup, and generate bal-
anced train/validation/test splits for both abu-
sive and non-abusive tweets. In addition, to
increase difficulty, we remove tweets with list
words appearing in more than one split (that
is, we ensure that the intersection of listed
words is null between train/validation/test).

To the best of our knowledge, there are no es-
tablished benchmark datasets for the problem of
OOV word detection. Recent work on character-
izing OOV words in twitter attempted to build a
dataset of such words (Maity et al., 2016), but
mostly focused on content analysis and catego-
rization (e.g., wassup and iknow, belong to word
mergings). We plan to develop big crowd-sourced
datasets of OOV social media texts and provide
them free to the research community.

2http://www.ef.com/english-resources/
english-vocabulary/

http://hatebase.org
http://www.ef.com/english-resources/english-vocabulary/
http://www.ef.com/english-resources/english-vocabulary/


Setup Word NB Char NB Word NB-LR Char NB-LR Char RNN Proposed
Easy 0.900 (0.091) 0.849 (0.052) 0.912 (0.113) 0.902 (0.102) 0.858 (0.141) 0.951 (0.080)
Hard 0.634 (0.109) 0.663 (0.080) 0.580 (0.089) 0.679 (0.038) 0.619 (0.101) 0.705 (0.059)

Table 1: AUC scores for the considered baselines (see text) and the proposed approach. A null random-
ized model yields 0.514 (0.082) and 0.503 (0.090) for the Easy and Hard setups, respectively.

4 Results

We compare the proposed approach with 5 of
the most common and competitive baselines in
abusive language detection (Djuric et al., 2015;
Mehdad and Tetreault, 2016). The first two are
based on a naı̈ve Bayes classifier using the TF-
IDF of both word and character n-grams (NB).
The next two are based on the approach proposed
by Wang and Manning (2012): similarly, word
and character n-grams are constructed, but NB ra-
tios are calculated, and logistic regression is used
as a classifier (NB-LR). The rationale behind this
choice over other classifiers (e.g SVMs) was that
Wang and Manning (2012) found that for short
text sentiment tasks, NB actually does performs
better than SVMs. For the previous non-neural
count-based baselines, we use all combinations of
{1,2,3}-grams with cutoff frequencies of 20 (NB)
and 100 (NB-LR). These cutoff frequencies were
chosen in-sample in order to maximize the perfor-
mance of these baselines. The fifth baseline is a
character-based RNN using a time-distributed em-
bedding layer, followed by a PReLU activation, a
GRU, a dense layer with PReLU activation, and
a dense layer with sigmoid output. We try differ-
ent values for the dimensionality of the aforemen-
tioned layers and finally use 200 (embedding), 400
(GRU), and 200 (dense).

The result of the comparison is reported in Ta-
ble 4. We see that, among the 5 baselines, there
is no clear winner for the two setups. Word-
based NB-LR performs best in the Easy setup and
character-based NB-LR performs best in the Hard
setup. Nonetheless, the proposed approach outper-
forms them by 4.2 and 3.8%, respectively. Com-
pared to the average baseline performance, we ob-
serve a relative improvement of 7.5 and 11.0%.
We also note that the standard deviation of the pro-
posed approach (across runs) is comparatively low
with respect to the baselines.

5 Future work

In this paper, we deal with hate speech detection
and, in particular, with abusive OOV words. To
this extent we propose to use the error signal of
class-based language models as input to text clas-
sification algorithms. In particular, we train a next-
character prediction model for any given class, and
then exploit the error of such class-based models
to inform a neural network classifier. This way, we
intend to shift from the ‘ability to describe seen
documents to the ‘ability to predict unseen con-
tent. Experiments using OOV splits from abusive
tweet data show promising results, outperform-
ing competitive text categorization strategies by 4–
11%.

We envision a number of potential extensions
for the proposed approach: adding an ‘all-class’
predictor to the language models, improve (or
learn) the error sequence normalization, studying
the effect of adding further classifiers in paral-
lel to the proposed classification model, ways of
fusing those, play with class-based sentence or
paragraph embeddings, etc. Generalizing the ar-
chitecture to longer sequences is a main task for
further research, perhaps considering recurrent,
quasi-recurrent (Bradbury et al., 2017), or convo-
lutional networks for the classification stage. A
qualitative analysis of the output of above classi-
fiers is planned as future work. Due to the fact that
our data are weakly-labeled and come from dic-
tionaries, we also plan to shift our focus to real-
world, curated data sets of abusive language, as
well as evaluate our models on human-annotated
crowd-sourced data.

Acknowledgments

This work has been fully funded by the Euro-
pean Commission as part of the ENCASE project
(H2020-MSCA-RISE of the European Union un-
der GA number 691025).



References
S. Arora, Y. Liang, and T. Ma. 2017. A simple but

tough to beat baseline for sentence embeddings. In
Proc. of the Int. Conf. on Learning Representations
(ICLR). https://openreview.net/pdf?id=SyK00v5xx.

J. Bradbury, S. Merity, C. Xiong, and R. Socher.
2017. Quasi-recurrent neural networks. In Proc. of
the Int. Conf. on Learning Representations (ICLR).
http://arxiv.org/abs/1611.01576.

S. Brody and N. Diakopoulos. 2011.
Cooooooooooooooollllllllllllll!!!!!!!!!!!!!! Using
word lengthening to detect sentiment in microblogs.
In Proc. of the Conf. on Empirical Methods in
Natural Language Processing (EMNLP). pages
562–570.

Ying Chen, Yilu Zhou, Sencun Zhu, and Heng Xu.
2012. Detecting offensive language in social media
to protect adolescent online safety. In Privacy, Se-
curity, Risk and Trust (PASSAT), 2012 International
Conference on and 2012 International Confernece
on Social Computing (SocialCom). IEEE, pages 71–
80.

K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Ben-
gio. 2014. On the properties of neural machine
translation: encoder-decoder approaches. In Proc.
of the Workshop on Syntax, Semantics and Structure
in Statistical Translation (SSST). pages 103–111.

Franois Chollet. 2015. keras. https://github.
com/fchollet/keras.

N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Ra-
dosavljevic, and N. Bhamidipati. 2015. Hate speech
detection with comment embeddings. In Proc. of the
Int. Conf. on World Wide Web (WWW). pages 29–30.

K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving
deep into rectifiers: surpassing human-level perfor-
mance on ImageNet classification. In Proc. of the
IEEE Int. Conf. on Computer Vision (ICCV). pages
1026–1034.

G Hine, J Onaolapo, E De Cristofaro, N Kourtellis,
I Leontiadis, R Samaras, G Stringhini, and J Black-
burn. 2017. Kek, cucks, and god emperor trump: A
measurement study of 4chan’s politically incorrect
forum and its effects on the web. In International
Conference on Web and Social Media (ICWSM). As-
sociation for the Advancement of Artificial Intelli-
gence (AAAI).

E. Keogh and M. Pazzani. 2001. Derivative dynamic
time warping. In Proc. of the SIAM Int. Conf. on
Data Mining (SDM).

D. P. Kingma and J. L. Ba. 2015. Adam: a
method for stochastic optimization. In Proc. of
the Int. Conf. on Learning Representations (ICLR).
https://arxiv.org/abs/1412.6980.

Q. Le and T. Mikolov. 2014. Distributed representa-
tions of sentences and documents. In Proc. of the
Int. Conf. on Machine Learning (ICML). volume 32,
pages 1188–1196.

Suman Maity, Anshit Chaudhary, Shraman Kumar,
Animesh Mukherjee, Chaitanya Sarda, Abhijeet
Patil, and Akash Mondal. 2016. Wassup? lol: Char-
acterizing out-of-vocabulary words in twitter. In
Proceedings of the 19th ACM Conference on Com-
puter Supported Cooperative Work and Social Com-
puting Companion. ACM, pages 341–344.

Y. Mehdad and J. Tetreault. 2016. Do characters abuse
more than words? In Proc. of the Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue (SIGDIAL). pages 299–303.

T. Mikolov. 2012. Statistical language models based
on neural networks. Ph.D. thesis, Brno University
of Technology.

C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and
Y. Chang. 2016. Abusive language detection in on-
line user content. In Proc. of the Int. Conf. on World
Wide Web (WWW). pages 145–153.

D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. 2000.
Speaker verification using adapted Gaussian mixture
models. Digital Signal Processing 10(1-3):19–41.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. SocialNLP 2017 page 1.

J. Serrà, H. Kantz, X. Serra, and R. G. Andrzejak. 2012.
Predictability of music descriptor time series and its
application to cover song detection. IEEE Trans. on
Audio, Speech and Language Processing 20(2):514–
525.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. 2014. Dropout: a simple way
to prevent neural networks from overfitting. Journal
of Machine Learning Research 15:1929–1958.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

S. Wang and C. D. Manning. 2012. Baselines and bi-
grams: simple, good sentiment and topic classifica-
tion. In Proc. of the Annual Meeting of the Associa-
tion for Computational Linguistics (ACL). volume 2,
pages 90–94.

https://openreview.net/pdf?id=SyK00v5xx
https://openreview.net/pdf?id=SyK00v5xx
https://openreview.net/pdf?id=SyK00v5xx
http://arxiv.org/abs/1611.01576
http://arxiv.org/abs/1611.01576
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

